
Thesis for the Degree of Doctor of Philosophy

Verification of Distributed Erlang Programs using
Testing, Model Checking and Theorem Proving

Hans Svensson

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

SE-412 96 Göteborg
Sweden

Göteborg, 2008

Verification of Distributed Erlang Programs using
Testing, Model Checking and Theorem Proving

Hans Svensson
ISBN 978-91-7385-096-4

c© Hans Svensson, 2008

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 2777
ISSN 0346-718X

Technical Report no. 38D
Department of Computer Science and Engineering
Division: Software Engineering and Technology
Research Group: Functional Programming

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Göteborg, Sweden
Telephone +46 (0)31–772 1000

Printed at the Department of Computer Science and Engineering
Göteborg, Sweden 2008

Abstract

Software infiltrates every aspect of modern society. Production, transportation,
entertainment, and almost every other sphere that influences modern living are
either directly or indirectly dependent on software systems. Software systems
provide such a degree of flexibility that their role as a driving force for new and
better products is indisputable.

The downside is that software systems are rarely error-free. For a plentitude
of reasons most software systems contain errors. Software errors impose large
costs; the more important the system, the higher is the cost of an error. Reports
show that a normal software development project spends 40% to 50% of its time
and budget on quality assurance. Thus, software project economy is a great
incitament for research of better tools and methods for software development.

This thesis is part of the continuous efforts of finding more efficient software
development methods and addresses the problem of verifying algorithm imple-
mentations. We have in particular studied algorithms designed for distributed
(systems composed of a collection of computers, processors or processes) and
fault-tolerant systems (systems designed to withstand some degree of failure).
Verification of distributed and fault-tolerant systems is notoriously hard because
both the distribution and the fault-tolerance add complexity to the software sys-
tems. The thesis introduces, motivates and evaluates several different verification
methods related to distributed and fault-tolerant algorithm implementations.

We introduce a trace-based testing method, which has been used to find and
analyze errors in an existing open-source implementation of a fault-tolerant leader
election algorithm. In the thesis we also present a new open-source implemen-
tation of a leader election algorithm, which is based on a verified algorithm by
Stoller.

We have developed a distributed semantics for Erlang. Errors found using
trace-based testing indicated that existing Erlang semantics were not detailed
enough. We propose a fully distributed extension of an existing single-node se-
mantics for Erlang.

We present McErlang, an explicit state model checker implemented in Erlang,
and using Erlang as its specification language. We demonstrate that the ’all in
Erlang’-approach to model checking is promising.

We propose a semi-automatic algorithm verification method that has been
used to prove safety properties for Stoller’s leader election algorithm. The veri-
fication method uses automated theorem provers to inductively prove first-order
logic invariants.

iii

This thesis is based on the work contained in the following papers:

1. Semi-Formal Development of a Fault-Tolerant Leader Election Protocol in Erlang,
T. Arts, K. Claessen, and H. Svensson, In Lecture Notes in Computer Science,
vol. 3395, p. 140-153, Springer, Feb 2005.

2. A New Leader Election Implementation, H. Svensson and T. Arts, In Proc. of the
ACM SIGPLAN 2005 Erlang Workshop, Tallinn, 2005.

3. A More Accurate Semantics for Distributed Erlang, H. Svensson and L-Å. Fred-
lund, In Proc. of the ACM SIGPLAN 2007 Erlang Workshop, Freiburg, 2007.

4. McErlang: A Model Checker for a Distributed Functional Programming Language,
L-Å. Fredlund and H. Svensson, In Proc. of International Conference on Func-
tional Programming (ICFP), ACM SIGPLAN, Freiburg, 2007.

5. A Semi-Automatic Correctness Proof Procedure applied to Stoller’s Leader Elec-
tion Algorithm, H. Svensson, Technical Report no. 2008:7, Computer Science and
Engineering, Chalmers University of Technology, 2008.

6. Finding Counter Examples in Induction Proofs, K. Claessen and H. Svensson,
published at ’The Second International Conference on Tests and Proofs’ (TAP),
in Prato, Italy, April 2008.

My contributions to these papers are:

1. I implemented the testing framework, re-using parts of earlier work by Arts, and
did all of the testing and trace analysis. All three authors were involved in the
discussion and presentation of the results. I wrote most of section 2; apart from
that the writing was equally divided among the authors.

2. My co-author did the first prototype implementation, which I then refined and
optimized. I performed the first round of trace-based testing, and we were both
involved in the QuickCheck testing. The writing was a joint effort, where I was
involved in writing all sections.

3. My co-author designed the single node semantics for Erlang briefly described in
section 2. I then designed and presented the distributed semantics for Erlang.
The paper is based on an earlier presentation of the distributed semantics [CS05],
written by me together with my supervisor. Both my supervisor and my co-author
contributed with good ideas and design proposals. I wrote most of the paper with
valuable additions by my co-author.

4. McErlang was designed and implemented by my co-author. I independently de-
signed and implemented a similar prototype system in Haskell, and some of the
ideas from there are also part of McErlang. My co-author did most of the writing
of the main sections 4 and 5, while I concentrated on sections 3 and 6. The work
on the other sections was equally divided among my co-author and me.

5. I implemented the proof framework, and constructed the needed invariants. The
implementation and proof are the result of many (long) discussions with my su-
pervisor. He was especially involved in the axiomatizations used in the proof
procedure. I have written the paper myself, with many valuable comments from
my supervisor.

6. The idea and problem statement comes mainly from my co-author. I did the
prototype implementation presented in the paper. The writing was quite equally
divided among my co-author and me. I wrote most of section 4 and was not very
involved in writing section 1 of the paper.

v

Contents

Acknowledgements xi

Introduction 1

1 Software Development . 2
1.1 Informal Software Verification 2
1.2 Formal Verification . 3

2 Distributed Systems . 3
3 Fault-Tolerance . 4
4 Leader Election . 5

4.1 Ring Networks . 5
4.2 The Bully Algorithm . 6
4.3 Verification of Leader Election Algorithms 7

5 Erlang . 8
5.1 Erlang Today . 9
5.2 Verification of Erlang Programs 9

6 Implementing a Formally Verified Algorithm 10
6.1 Semantic Incompatibility 10
6.2 Context Adaptation . 11
6.3 Verifying the Implementation 11

7 Abstractions . 14
8 Contributions . 16
9 Thesis overview . 17

Paper 1 – Semi-Formal Development of a Fault-Tolerant Leader

Election Protocol in Erlang 29

1 Introduction . 31
2 Methodology . 33

2.1 Fault-Tolerant Leader Election Version 1 33
2.2 Generating Stimuli and Tracing 34
2.3 Abstractions . 35
2.4 Abstractions for Bug Finding 36
2.5 Sanity Checks on Abstractions 38
2.6 Fault-Tolerant Leader Election Version 2 39
2.7 Abstractions for Verification 40
2.8 Coverage . 41

vii

viii CONTENTS

3 Related Work . 42
4 Conclusions and Future Work . 43

Paper 2 – A New Leader Election Implementation 47

1 Introduction . 49
2 Algorithm . 51
3 Implementation and Testing . 54

3.1 Testing with trace recording 55
3.2 Testing with QuickCheck 56
3.3 Coverage . 57

4 Discussion . 58
5 Acknowledgments . 59

Paper 3 – A More Accurate Semantics for Distributed Erlang 61

1 Introduction . 63
2 Original semantics . 65
3 Motivation . 69

3.1 Message reordering . 69
3.2 Disconnected nodes . 72

4 Distributed (Multi-Node) Semantics 72
4.1 Nodes . 73
4.2 Node message queues . 73
4.3 Run-Time systems . 73
4.4 Changes to the single-node semantics 74
4.5 Transitions . 75
4.6 Operational output rules . 76
4.7 Operational input rules . 76
4.8 Operational node rules . 77
4.9 Fairness . 79
4.10 Message reordering . 80
4.11 Node disconnection . 80

5 Properties of the Multi-Node Semantics 81
5.1 Extension . 82
5.2 Message Reordering and Node Disconnect 83
5.3 Expressiveness . 84
5.4 Finite systems stays finite 84
5.5 A word of caution . 84

6 Discussion . 85
7 Related Work . 87
8 Conclusions and Future Work . 88

Paper 4 – McErlang: A Model Checker for a Distributed Functional

Programming Language 91

1 Introduction . 94
2 The Erlang Programming Language 96
3 Semantics . 97

3.1 World Hello? . 98

CONTENTS ix

3.2 Semantics implemented in McErlang 100
4 Structure of the Implementation 100

4.1 Source Language . 100
4.2 Correctness Properties . 101
4.3 Algorithms . 102
4.4 Tables . 103
4.5 Abstractions . 104

5 Executing Erlang Programs in McErlang 104
5.1 Run-time Organization . 105
5.2 Translation . 106
5.3 Data Structures in the Run-time System 109
5.4 Model Checker Semantics 110
5.5 Run-time Environment Modeling 111

6 Evaluation . 113
6.1 Resource manager . 114
6.2 Leader election . 115

7 Discussion . 118
8 Related Work . 118
9 Conclusion and Future Work . 119

Paper 5 – A Semi-Automatic Correctness Proof Procedure applied

to Stoller’s Leader Election Algorithm 125

1 Introduction . 127
2 Background . 129
3 Algorithm . 130

3.1 General Description – The Bully Algorithm 130
3.2 Garcia-Molina’s Bully Algorithm 131
3.3 Stoller’s Bully Algorithm 131

4 Proof Procedure . 132
4.1 Sanity Checks . 133

5 Model . 134
5.1 The Initial State . 136
5.2 Axiomatization . 136
5.3 Message Queue Model . 139

6 The Main Invariant . 140
7 Implementation . 141

7.1 Embedded Language for Algorithm 141
7.2 The []-Operator . 141
7.3 Proof Tactics . 141

8 Proof . 142
8.1 Statistics . 142
8.2 Tactics . 143
8.3 Theorem Provers . 143
8.4 Proof Example . 145
8.5 Proof Procedure Summary 146

9 Conclusions . 147

x CONTENTS

Paper 6 – Finding Counter Examples in Induction Proofs 149

1 Introduction . 151
2 Verification Method . 154

2.1 Failed Proof Attempts . 155
2.2 Identifying the Categories 156

3 Finding Counter Examples by Random Testing 157
3.1 QuickCheck . 157
3.2 Trace counter examples . 158
3.3 Induction step counter examples 159

4 Results . 161
4.1 Trace Counter Examples . 161
4.2 Induction Step Counter Examples 162

5 Discussion and Conclusion . 166

Appendix – Invariants, Axioms and Definitions for the Leader Elec-

tion Algorithm Proof 169

A.1 Appendix Overview . 169
A.2 Predicates . 169
A.3 Functions/Constant Symbols . 169

A.3.1 State-arrays - indexed by host 169
A.3.2 Natural numbers . 170
A.3.3 State-names . 170
A.3.4 Global sets . 170
A.3.5 Messages . 170
A.3.6 Set functions . 170
A.3.7 Array functions . 170
A.3.8 Host function . 170

A.4 Axioms . 171
A.4.1 Axioms – stoller . 171
A.4.2 Axioms – con-sys . 172
A.4.3 Axioms – cons-snoc . 172
A.4.4 Axioms – arith . 174
A.4.5 Axioms – sets . 175
A.4.6 Axioms – twice-msg . 175

A.5 Invariants . 175

Acknowledgements

First I would like to thank my brilliant supervisor Koen Claessen. Koen has a
virtually endless supply of ideas and has been very supportive in every aspect
of my PhD studies. Koen was also the person who got me into verification and
logics in the first place, now some six years ago!

Many thanks to Thomas Arts, co-author of two of the articles in the thesis,
and Lars-Åke Fredlund, also co-author of two articles in this thesis. Thomas and
Lars-Åke have provided much valuable knowledge from the Erlang community,
and it has been a great pleasure working with them.

I am very grateful for the valuable comments and corrections to the thesis
provided by my opponent Jaco van de Pol. His suggestions has improved the
thesis in numerous places.

I am also grateful for the feedback to this thesis provided by Mary Sheeran,
who has also given me good support as examiner and member of my PhD com-
mittee.

Thanks also to John Hughes for his support in the work with Erlang Quick-
Check and Graham Kemp for being a member of my PhD committee.

Many thanks to the previous Formal Methods group, and newly formed Fuc-
tional Programming group for the inspiring discussions and interesting seminars.

Many thanks to my outstanding office-mate and friend Emil Axelsson. We
have shared an office for 4.5 years and have had a good time together. I wish
him the best of luck with his ongoing thesis writing. Also thanks to my previous
office-mate Magnus Björk, and to my good friend and colleague Andreas Larsson
who reminds me when it is time for lunch. I am also grateful to everyone in the
department, this is an enjoyable place work.

Finally, thanks to my fiancé (and soon to be wife), Elin, for her continual
support and love!

xi

1

Introduction

Computers are everywhere nowadays; they are part of almost every aspect of
modern society. This means that we are becoming increasingly dependent on
computerized systems, be it in cars, telecommunication, energy distribution or
our daily work environment. Along with computers comes computer software, the
programs that dictate what the computer should do. The flexibility of software-
controlled systems, the constant need for new and more advanced products and
business competition drive the development with an enormous force.

Despite its widespread use, software is almost never error-free. For a wide
variety of reasons it is extremely difficult to construct ’perfect’ software systems.
Lyu’s opinion is “software is a systematic representation and processing of human
knowledge” [Lyu95], and perfect knowledge about a problem is rarely achieved.
Abbott’s opinion is not very encouraging either “programs are really not much
more than the programmer’s best guess about what the system should do” [Abb90].
An important aspect is that the more important a system is, the more costly, be
it in terms of economy or some other measure (ultimately even human lives), is
a failure. A US Congressional report from 2002 estimate that software errors
cost the US economy $60 billion annually [Ins02]. At the same time, Sommerville
reports that a normal software project spend 40% to 50% of its budget on testing
and system integration [Som06].

Much has been improved since the first bug [Hop81], but software errors are
still part of far too many computer systems. It is clear that there is a huge
demand for methods and techniques to produce better software. And although
construction of reliable software is a problem without an obvious solution, time,
money, research and hard work are constantly invested in improving the situation.

This dissertation is focused on the problem of verifying algorithm implemen-
tations. The problem is studied in a distributed and fault-tolerant setting. The
introduction tries to give a general perspective of software development issues
together with relevant related work. It gives a gentle introduction to the leader
election problem, explains the terms distributed and fault-tolerant, introduces the
Erlang programming language, and discusses the task of implementing a formally
verified algorithm. The introduction finally highlights the main contributions of
the thesis and gives an overview of the rest of the thesis.

2 Introduction

1 Software Development

Software development is “the translation of a user need or marketing goal into a
software product”∗. The software industry is one of the fastest-growing industries.
The 500 largest software companies had a total revenue of $394 billion in 2006
[Des07] and almost 3 million employees. Software development is also a large
research area, mainly because it is inherently difficult to construct reliably working
software. There are several reasons for this:

• It is hard to specify what the correct behavior is.

• Systems are often very complex, and developers lack the tools and methods
to deal with this complexity.

• The programming languages and development tools do not give the devel-
oper enough support.

• Some underlying (theoretical) problems are still awaiting a solution, while
others are unsolvable.

Software development research is often focused around the problem of verifying
that a given piece of software behaves correctly; however, before that problem can
be attacked, we need to specify the meaning of ’correctly’ in this setting. That
is, we need some sort of specification to precisely express the intended behavior
of the system [PST91]. In practice such a specification often also has a second
purpose, it can be seen as an agreement between the contractor and the customer.
Nevertheless, having settled for a specification, another question quickly arises:
How do we know that the specification is correct? This is an equally important,
and difficult, question that must not be overlooked [CAB+98].

Once a sufficiently detailed and trustworthy specification has been agreed
upon, there are two main approaches to check that the system conforms to the
specification: informal software verification and formal software verification. The
two approaches are not orthogonal and there is a certain degree of overlap.

1.1 Informal Software Verification

With informal verification we usally mean methods that give an incomplete judge-
ment about the actual system. The most common view on informal verification
is software testing. Software testing is an operational way of checking software
correctness (or rather software in-correctness, since one is trying to expose errors)
by executing the software and inspecting its behavior [Bei90]. Tests are usually
executed in a controlled environment to a system under test (SUT) [Tre92]. The
standard way to conduct testing, is to create a test suite, where program input is
specified together with its expected outcome. Using the test suite, the program
is executed with input from the test suite and the results are compared with the
expected results [Mye79, Bei90].

∗http://en.wikipedia.org/wiki/Software development

2 – Distributed Systems 3

There are also more formal approaches to testing [TB99], where formal theories
are used to increase the effectiveness of testing. One such approach is model-
based testing, where tests are generated from a formal specification of the SUT
[DJK+99, OA99, FTW06].

1.2 Formal Verification

In formal verification, logic-based methods are used to give a complete judge-
ment about a model of the system. There are a variety of different approaches
to formal verification, including (automated) theorem proving [RV01] and model
checking [CGP00]. A formal verification technique proves that the system ful-
fills the system specification. In theorem proving the system is modeled in some
suitable logic, and a proof of the specification is constructed using deductive rea-
soning [Hoa69]. In model checking a finite state representation of the system is
used. The specification is often expressed using temporal logic [HR00], and the
model checker test whether the temporal logic formula is true for the state space
[CGP00]. The result of a formal verification attempt is either a proof of correct-
ness or some sort of failed proof attempt. The second could be regarded as a
failure, however, much information can be gained also from a failed verification.
For example in model checking, the result of a failed verification is a counter
example. The counter example is an explicit example of how the system does not
fulfill the specification, and from this information it is often possible to deduce
what is wrong with the system (or specification).

2 Distributed Systems

A non-theoretical definition of a distributed system (borrowed from Tel [Tel00]) is
“An interconnected collection of autonomous computers, processes or processors.”
The computers, processes or processors are referred to as the nodes of the system.
Note that processes may play the role of nodes in a system. Thus the definition
does not exclude software running on a single hardware installation.

There are several reasons for using a distributed computer system. The most
common reasons are:

• Performance – If a computation can be performed in parallel, it is possible
to increase the performance (measured in time to result) substantially by
using a distributed system.

• Reliability – In critical systems a distributed system is used for fault-
tolerance. A simple example could be one machine (or processor) doing the
work with a second machine (or processor) replicating the first and taking
over in case of failure.

• Physical distribution – Physically distributed devices could make dis-
tributed solutions necessary.

4 Introduction

• Resource sharing – The ability to share resources (computation power,
storage, peripheral units, etc) could be a reason for building a distributed
system.

It is clear from the list above that there is a lot to gain in some situations.
However, there is also a price for the improved capacity, namely an increased
complexity in the software running on the distributed systems. The possibility of
running several operations in parallel might lead to non-deterministic programs;
meaning that the result of the program depends on the order in which operations
happen to finish. As a result of this added complexity, it is even harder to verify
distributed software [HM85]. This effect is particularly evident when one tries to
reproduce errors, since an error might only be detectable in a particular order of
events [CT91].

3 Fault-Tolerance

A fault-tolerant system is designed to be able to continue its operation when
some part of the system fails. If the system continues only at a reduced level, it is
said to be gracefully degrading. Fault-tolerance is particularly desirable in high-
availability or life-critical systems. Three important questions to ask regarding
the use fault-tolerance are:

1. How important is the system?

2. How likely is the system to fail?

3. What is the cost of fault-tolerance?

Fault-tolerance for software systems comes in many different flavors. Fault-
tolerance can be achieved by anticipating exceptional conditions and designing
the system to handle such situations, or aim for self-stabilization so that the
system always converges towards an error-free state. Another way to achieve
fault-tolerance is to introduce redundancy (having several instances of the system,
switching to one of the remaining instances in case of a failure – fail-over) or
replication (having several instances of the system all running in parallel, choosing
the correct result by voting). For further discussion of fault-tolerance, we refer
to a report by Torres-Pomales [TP00].

Naturally, additions to achieve fault-tolerance increase the complexity (and
thus in the end the cost) of the system. The increased complexity also means that
verification of fault-tolerant systems is often harder than verification of systems
without fault-tolerance. There are platforms, such as Erlang OTP [Tor97], FT
Concurrent C [CGR88], and to some extent Ada [Bar95], that are designed with
fault-tolerance in mind. Using such a platform makes the complicated task of
achieving fault-tolerance somewhat easier.

4 – Leader Election 5

4 Leader Election

The problem of leader election was first posed by LeLann [LeL77] and can be
formulated generally as:

Given a set of participating processes, the processes should among
themselves designate a single process as the leader and all other pro-
cesses should recognize the leader.

The leader election problem has been studied (and solved) for a variety of
different assumptions. Usually the basic assumptions are that each participant has
a unique identifier and that the goal is to choose the member with the largest (or
smallest) identifier as the leader. There are, however, different fault assumptions:

• Processes may or may not fail

• Communication links may or may not fail

• Messages may or may not be corrupted

In addition to the different fault assumptions there are also different time as-
sumptions. Models are usually divided in synchronous [BB02] and asynchronous
[CF99] time models. Depending on the different assumptions the leader election
problem is more or less complicated to solve. Below we describe two different
assumption settings as well as proposed solutions.

4.1 Ring Networks

Figure 1: Unidirectional ring network

A ring network with N nodes is the graph with nodes 0 to N−1 where node
i has edges vi and vi+1 (all indices are calculated modulo N), see Fig. 1. Ring
networks are frequent in the study of distributed algorithms, mainly because of
their simplicity. However, there are also some physical networks, for example the
well known Token Rings [Tan96], arrange their nodes in a (virtual) ring structure.

6 Introduction

For convenience there is assumed to be an underlying layer responsible for re-
programming the structure in case of node failure, thus maintaining the ring
structure. One important aspect is the difference that often exist between the
theoretical settings explored in algorithm papers and the “real” settings where
the algorithms are used. (See also Sect. 6.1, in which the semantic gap between
theoretical and practical settings is further discussed.)

The leader election problem was originally posed for the unidirectional ring
network (in which messages can only pass in one direction through the edges)
context by LeLann [LeL77]. LeLann also gave a solution with a message com-
plexity in terms of number of messages of O(N2). LeLann’s solution was slightly
improved by Chang and Roberts [CR79]. For bidirectional ring networks (mes-
sages are passed in both directions) Franklin described an O(N logN) solution
[Fra82]. Peterson [Pet82] and Dolev, Klawe and Rodeh [DKR82] independently
adapted Franklin’s algorithm to an O(N logN) solution also for unidirectional
ring networks. It has been proved that O(N logN) is the lower bound for uni-
directional ring networks. Naturally the bounds are only applicable in a stable
situation, when nodes do not cease to work during the election.

The algorithms mentioned above can cope with different failures, for example
LeLann discusses how to cope with crash failure (nodes stop working, but do not
start again). There are also even more robust algorithms, namely the family of
self-stabilizing algorithms. A self-stabilizing algorithm is able to fulfill its task re-
gardless of which state it happens to start in. (Imagine a ring network where the
nodes are hit by ionizing radiation.) Note that this is a substantially stronger re-
quirement than tolerating node failures and communication failures, and naturally
an algorithm satisfying these conditions is more complex. A first self-stabilizing
protocol for ring networks was presented by Burns and Pachl [BP89] and an im-
proved version was suggested by Huang [Hua93]. Another variation is anonymous
ring networks, where processes do not have unique identities. For anonymous ring
networks, no terminating deterministic algorithm exist [Ang80]; however, Itai and
Rodeh has shown that probabilistic methods can break symmetry in anonymous
ring networks [IR90].

4.2 The Bully Algorithm

In this scenario we consider an arbitrary, fully connected network instead of the
simpler ring network. We also define beforehand the set of participating nodes.
Using this model the selection task seems trivial; simply select the node with the
smallest (according to some ordering) identifier. However, since nodes are allowed
to fail and restart at any point in time, the problem is far from being trivial.

The Bully Algorithm was presented by Garcia-Molina [GM82] as a solution
to this problem. The algorithm got its name because in the election process
nodes with high priority force nodes with lower priority into accepting them as
the leader. (Note, Garcia-Molina used the term coordinator instead of leader.)
The Bully algorithm is used, with some modifications, in our leader election
implementation.

4 – Leader Election 7

Figure 2: Election phase 1

(a) Part 1 (b) Part 2

Figure 3: Election phase 2

Assume that the node with identification number i starts an election. (There
are several reasons for starting a new election; the old leader died, the process just
recovered or the last election was aborted since the candidate leader died.) The
election protocol is divided into two phases. In the first phase, the node commu-
nicates with nodes that have a higher priority and in the second it communicates
with nodes that have a lower priority. First, as shown in Fig. 2, node i tries to
contact all nodes with higher priority. If any of the nodes with higher priority is
alive, node i gives up its bid to become leader and waits for communication from
that node. (If i does not hear from this node in a while, it should again restart
the election process). If no node with higher priority is alive, node i continues
with the second phase of the algorithm. In the second phase, node i contacts all
nodes with lower priority (in priority order) to inform them that node i intends
to become the leader. This is done in a two-step process by first force all nodes
with lower priority into a state where they are ready to accept the new leader,
shown in Fig. 3(a). Thereafter, to actually become the leader, node i sends an-
other message to all nodes with a lower priority, illustrated in Fig. 3(b). (To get
a better intuition of why this works one can read the informal introduction of
the algorithm in Garcia-Molina’s paper [GM82].) If i itself has the highest (or
lowest) priority, the first (or the second) phase is trivial.

4.3 Verification of Leader Election Algorithms

The leader election problem has been covered in many different papers. Numerous
solutions to the problem exist, differing in assumptions about network topology,
message passing, identification of participants, etc. [BKKM96, DIM97, Sto00,

8 Introduction

ADGF01]. Published leader election algorithms often include a correctness proof
[Sin96, Sto97]. For other algorithms verification has been performed separately;
ring network algorithms of LeLann’s [LeL77] and Chang and Roberts [CR79]
have been specified and verified by Garaval and Mounier [GM96] using the Lotos
specification language and the Cadp toolbox. Fredlund et al. [FGK97] performed,
using process algebra, a similar specification and verification effort for the ring
network algorithms by Peterson [Pet82] and Dolev et al. [DKR82]. Devilliers et al.
used an I/O automata model to verify the leader election part of the IEEE 1394
high performance serial multimedia bus protocol (FireWire) [DGRV00, Rom01].
Usenko studied the HAVi leader election protocol using both SPIN and µCRL
[Use99].

One problem with implementations of algorithms is that, as discussed in
[ACHS05], implementations rarely follow the algorithm exactly. Therefore, the
formal verification of the algorithm does not easily transfer to the actual imple-
mentation.

5 Erlang

Erlang [AWWV96, Arm07] is a dynamically typed functional programming lan-
guage. Erlang was developed by Ericsson, a Swedish telecommunication com-
pany, and consists of a small functional core together with powerful constructions
for concurrency. Erlang is especially suited for implementing fault-tolerant dis-
tributed systems. The language has built-in primitives for operations such as
process creation, message passing and process supervision. The development of
Erlang was driven by demands for fault-tolerance and also by demands to have
continuously running systems that cannot really be taken down to be able to
perform software upgrades and add functionality. Therefore, Erlang also includes
functionality for hot code replacement (that is replacing code at runtime without
stopping the system).

Most software written in Erlang is running in a distributed environment. In
Erlang terminology: a distributed system consists of nodes, which communi-
cate over a network. Each node contains multiple light-weight processes that
are separated in memory. Processes use asynchronous message passing as their
only method of communication. The message passing is implemented with a
per-process mailbox, which is always ready to receive a message. An expressive
pattern matching syntax gives a process control over message retrieval from its
mailbox [Arm03]. Further, Erlang supports process linking, which means that a
process A can obtain a link to a process B. If process B fails, the linked process
A gets a notification message about B’s failure [Wik94].

OTP (Open Telecom Platform) is a development platform for building tele-
communications applications, and a control system platform for running them
[Tor97]. OTP is based on Erlang, and was originally targeted only for telecom-
munications. However, the OTP system architecture includes many useful tools
(ASN.1 compiler, SNMP support, Trace tool, Debugger, Profiler, etc.) and build-
ing blocks (Mnesia real-time DBMS, OS monitoring, Erlang Virtual Machine,
Web server, etc.), which have proved to be very useful also in non telecommu-

5 – Erlang 9

nication applications [Erl07]. OTP also specifies certain generic behaviors, such
as client-server communication, finite-state machines and process supervision hi-
erarchies. These behaviors are widely used, and many applications are built
upon them. Because of their wide usage and structured implementation, several
program verification initiatives have been targeted against the generic behaviors
[AF02, ABS04].

5.1 Erlang Today

Erlang was released as open source by Ericsson in 1998, and since then its pop-
ularity has slowly increased. The concurrency oriented nature [Arm03] and the
(mostly) transparent distribution has made Erlang a good candidate for writing
efficient distributed systems as well as for experimenting with distributed systems
in research. Lately the introduction of multi-core systems has further strength-
ened the position of Erlang. Since release 5.5/OTP R11B, Erlang has built-in
support for Symmetric Multi Processing (SMP) and the SMP support is com-
pletely transparent. How much is gained, i.e. how much it can take advantage
of the multi-core technology, is of course highly dependent on the particular ap-
plication. However, tests shows that existing Erlang applications, without any
modifications, get significantly improved performance [Eri06].

5.2 Verification of Erlang Programs

There are many different approaches for testing Erlang programs. One interesting
testing technique is automatic test case generation [BJ03], that has been used for
industrial applications written in terms of OTP components. Another approach
is to use the built-in tracing system, and perform analysis of the collected traces
[AF02]. Paper 1 in this thesis is an extension of this approach. It is also possible
to use flow graphs to measure test coverage [Wid04], but that work focuses on the
sequential part of Erlang and is not applicable to distributed systems. Random
testing [Ham94], especially in the QuickCheck implementation [CH02, AH03], is
a powerful tool for simple and effective testing of (possibly distributed) software.
When using QuickCheck, properties are specified for the program. QuickCheck
then tests that the properties hold in a large number of randomly generated cases.

There are also some approaches to formal verification of Erlang programs. One
formal verification technique is to translate Erlang into µCRL [ABS04] and then
model check the µCRL-model. This approach has been applied successfully to a
resource locker [ABD04, EFD05]. A similar approach using µ-calculus is [DFG98],
which introduces both a logic and a proof system for specifying and proving prop-
erties of distributed systems. The “Verification of ERLANG Programs” project
[DF98, FGN01, FGN+03] resulted in the theorem prover, Erlang Verification Tool
(EVT). EVT assists in making proofs about Erlang programs. Huch uses a rather
different approach [Huc99] (later refined in [Huc01] and [Huc02]), where abstract
interpretations are used to reduce the size of the state space before applying model
checking. Noll has tried both a rewriting logic implementation of Erlang [Nol01],
and modeling Erlang in π-calculus [NR05].

10 Introduction

6 Implementing a Formally Verified Algorithm

In practical software development one is often faced with an algorithmic prob-
lem, and for most such problems there are books and papers describing potential
solutions. To use a (formally) verified algorithm seems to be a good strategy;
however, algorithm implementation is normally a rather complex process.

(a) Ideal situation (b) Normal situation

Figure 4: Implementing algorithm from theory

In the ideal situation, see Fig. 4(a), we have the requirements (REQ) and
find an algorithm/theory that fulfills the requirements. Having made an imple-
mentation we must then ensure that the implementation is correct with respect
to the theory. The key observation is that we can benefit from the fact that
the theory is verified. Still, this is in itself not an easy task. However, in the
normal situation we are even worse off, see Fig. 4(b). Firstly, we often have to
(slightly) adapt the requirements in order to find a suitable algorithm (semantic
incompatibility). Secondly, the original requirements might make adaptations of
the algorithm necessary (context adaptation). Thus, in the resulting situation it
is unclear what to verify. Nevertheless, we argue that we could still benefit from
the verification of the original algorithm, although doing so requires some extra
care. To summarize, the two main issues are:

1. Semantic incompatibility, algorithms assume a semantic model of the
execution environment that is not compatible with (nor can be adapted to)
the actual execution environment.

2. Context adaptation, requirements force the addition of features or even
slight modifications of the algorithm during implementation.

6.1 Semantic Incompatibility

Algorithms are presented for an often implicit programming model. There are
incompatibilities for sequential algorithms. For example the original Quicksort al-
gorithm [Hoa62] assumes an imperative implementation language, which is rather
different from an object-oriented language or a functional language. For concur-
rent and distributed algorithms this is even more evident. For example, if the

6 – Implementing a Formally Verified Algorithm 11

underlying assumption is a shared memory architecture, an implementation in a
message passing environment is quite likely to introduce errors that do not stem
from the algorithm. Similarly, an algorithm for a ring network could be imple-
mented for a TCP/IP based network (which is often similar to a fully connected
network). One could even simulate a ring on top of such network; however, some
reasoning is required to ensure that the simulated ring indeed has the properties
assumed in the description of the algorithm. Strictly speaking, the correctness of
such transferred implementations is an open issue and referring to a proof of the
underlying idea creates false trust.

Of course, it is impossible to overcome all semantic incompatibilities. New
programming languages, components, operating systems, network technology, and
other technical innovations cannot be foreseen. Moreover, one cannot possibly
describe one algorithm for all the existing semantic models.

6.2 Context Adaptation

Software requirements are usually not expressed in terms of ’implement algorithm
X.’ Algorithms may form part of the total solution. Given a set of requirements,
it is often hard to recognize the possibility to use a certain existing algorithm. A
second challenge is to find a version of that algorithm that fits the requirements
best.

Implementing algorithms practically always requires some modifications that
seem not to influence the algorithm, but which can still be a source of errors. For
example, one could be required to implement an algorithm using the file system
as storage medium instead of primary memory. Immediately, one is forced to test
whether files are already open, whether one has write access and so on. These
small, rather straightforward changes may easily introduce an error, although the
algorithm is correct.

6.3 Verifying the Implementation

These issues are certainly not new. The gap between formal models and imple-
mentations has been known for a long time. In the seventies, Knuth made a
famous remark about a dequeing algorithm “Beware of bugs in the above code; I
have only proved it correct, not tried it” [Knu77]. That is, given that we have a
proof of correctness, which might be rare in general, there is still a gap and there
are several possible ways to bridge the gap.

• Informal reasoning – One can do as Knuth actually did. He reasoned about
the algorithm, and mimicked a formal proof in the lines of code written
(while having the semantics of the pseudo language in mind).

• Testing – One can do as Knuth (more or less) suggests, write a few test
cases to check that no obvious mistakes are made.

• Program analysis – One can analyze the source code, by using slicing, ab-
straction, etc. [Wei81, CGL94]

12 Introduction

• Model checking – One can implement the semantics of the programming
language in a model checker [HS02, FS07].

• Theorem proving – One can implement the semantics of the programming
language in a theorem prover [BM75, HJ00, FGN+03, ABB+05].

• Code generation – One can automatically generate the implementation from
a more high-level description [BFVY96, Har01].

• Property based trace testing – One can generate a part of the state space
and prove properties about the generated part. Errors found in this way
are real errors, which is good. Provided that the test vectors are realistic
(which can be hard to assure) most errors can be caught with this method.
[AF02, HBUP03, ACS05]

Informal Reasoning

During the implementation of an algorithm, there is some implicit informal rea-
soning; the developer reasons like: ’Yes, I am implementing what is proved/pre-
sented in this paper’. Very often this type of reasoning is not regarded as part
of the verification process. Nevertheless, it is very important to realize that this
reasoning happens, and that it is likely to influence the rest of the verification.
Take the testing process as an example, the developer (if involved in the testing)
is very likely to focus on parts of the system that were hard to implement.

Testing

Everyone who has done software development has probably some intuitive picture
of what constitutes a good software testing approach. Most developers would also
agree that it is in general a very difficult task to carry out a good testing effort.
Another well known fact is that testing concurrent/distributed systems is more
difficult than sequential, single-process, systems [MH89].

When discussing implementations of (formally) verified algorithms (with pos-
sible adaptations), we focus on what is gained in the test process by having the
algorithm description. In a standard testing environment (with an ordinary test-
bench and hand-made or generated test cases) we do not gain very much. Firstly,
the algorithm description is not likely to describe how to construct test cases or
stimulate the system. Secondly, in the case of a distributed system, the prop-
erties stated in the algorithm verification are often global properties that cannot
be easily checked for a test run of the system. In a formal testing environment
the situation is a bit better. For example, algorithm properties could help in
constructing a model for model-based testing [DJK+99].

Model Checking

If the algorithm we have implemented is model checked (or proved correct with a
theorem prover) it is tempting to also try to formally verify the implementation.
However, in general this is not feasible. It is both expensive (in terms of time)

6 – Implementing a Formally Verified Algorithm 13

and complex (in terms of education/level of expertise). The main complications
are:

• Programming language semantics – The model must not only model
the actual implementation, but also the semantics of the implementation
language. (Simplifications are often possible, but not without the risk of
errors, see abstractions below.) It is preferable to push the model as close
to the actual implementation as possible; however, that means more details
and in the end a larger state space to check. There are several successful
projects, where models are automatically extracted from program code, for
example Modex (Ansi-C to Promela model) [Mod] and Bandera (Java to
Promela model) [Ban].

• State space explosion – The hardness of the model checking problem
is often governed by the type of system at hand and the level of detail.
Ordinary sequential programs can often be coped with, but distribution
and/or fault-tolerance often causes enormously large state spaces [Val98].
Many different techniques, such as abstractions, partial order reductions,
symbolic representations and distributed approaches, have been developed
to handle the state space explosion problem [McM93, CGL94, Pel98, BBS01,
BLvdPW08]. Nevertheless, it is still a problematic issue.

• Abstractions – To handle a sufficiently detailed model (maybe including
distribution and fault-tolerance) it is often necessary to use abstractions.
An abstraction is essentially a mapping from concrete states into abstract
states, where (in order to reduce the number of states) several concrete
states are mapped to the same abstract state [CGL94]. Designing good
abstractions is far from trivial, and incorrect use of abstractions may inval-
idate the model checking results. Abstractions are further discussed in the
next section 7.

Theorem Proving

Program verification by theorem proving is a high-end, very complex, approach.
While theorem proving is quite common in algorithm design, it is far less used in
large (industrial) software projects. (Despite the complexity, there are a number
of success stories, such as verification of a floating point arithmetic unit [Har99]
and verification of a resource locker[ABD04].) The main reasons are:

• Non-reusable proofs – A formal proof often contains some sort of proof
object or proof script. Although it is easy to re-run a proof script if the
conditions change, it is not very likely that the same reasoning goes through
unchanged. Because of the high level of detail, even a small modification
can require substantial changes in the proof. The same things can be said
for informal reasoning; however, the risk for errors after changes in informal
reasoning is bigger. The lack of formality means that it is easy to overlook
the consequences of a minor change.

14 Introduction

• Lack of automation – Theorem proving is hardly automatic today. The
most successful approaches [Har99] are using (semi-)interactive methods
and theorem provers such as HOL, Isabelle, PVS, Key and ACL2 [NPW02,
ORS92, ABB+05, KM08, BKM96]. The interaction require a high level of
education for the person performing the verification.

• Programming language semantics – Since we are proving correctness of
the implementation one must also take into account the (possibly complex)
programming language semantics. Several theorem proving approaches con-
sist of customized proof systems that incorporate the programming language
semantics [BM75, ABB+05, Moo03, FGN+03].

Property Based Trace Testing

Property based testing is a specialization of testing, where the tests are driven
by software properties [FB97, SC96]. Property based testing roughly consists of
two phases, (1) specifying properties and (2) testing that the system fulfills the
properties. One commonly used property based testing framework is QuickCheck
[CH02, Hug07], which is a property based tool for random testing.

Property based testing is more formal than ordinary testing. At the same
time it is still far more lightweight than model checking and theorem proving
since the only formal part are the properties. We think that property based
testing goes hand-in-hand with formally proved algorithms. That is, property
based testing should be especially suitable for testing implementations of formally
verified algorithms, since it is hopefully rather easy to extract properties from the
algorithm description [ACHS05].

7 Abstractions

Systems gradually are getting larger and more complex, at the same time the
verification task is simultaneously getting harder. Since model checking generates
(either explicitly or symbolically) all possible system states, it is crucial not to
have a too many system states. (Hardware and algorithm development has pushed
the state space size limits quite some way, but still, the size of the state space is
a main concern.) To cope with a detailed model and perhaps also distribution
and fault-tolerance it is almost always necessary to make abstractions. In Fig. 5
we see an example of a simple abstraction. On the left side we have the concrete
state space, and the corresponding abstract state space is shown to the right.
The abstraction maps concrete states (here S1,. . . ,S4) into abstract states (here
AS1 and AS2, where S1 and S4 maps to AS1 and S2 and S3 maps to AS2). An
important observation is the fact that every path (that is a sequence of states
obtained by a series of transitions) in the concrete state space is represented
by an abstract path in the abstract state space. A corollary of this is that a
safety property that holds for the abstract state space also holds for the concrete

7 – Abstractions 15

state space† [CGL94]. The converse is not true, if a property is violated in the
abstract state space, the counter example may possibly not have a corresponding
counter example in the concrete state space. This is known as a false negative,
a situation in which a positive result is falsely reported as a negative result.
False negatives are the result of the information loss that occurs when reducing
a large concrete system into a smaller abstract system. The situation is also
known as overapproximation. To avoid such false negatives, one needs to refine
the abstraction. The goal is to not introduce the spurious behavior in the abstract
state space. In some situations abstraction refinement can be automated given a
false counter example [CGJ+00].

Figure 5: Abstraction example

When it comes to handling abstractions, there is a difference between sym-
bolic state model checkers and explicit state model checkers. Using a symbolic
state model checker it is often possible to handle the abstraction algorithmically,
by translating the abstraction to a symbolic operation [McM93]. This can, how-
ever, be a complex and very computationally expensive operation. In an explicit
state model checker, such as McErlang [FS07], it is generally impossible for larger
problems to compute an exact abstraction like in Fig. 5. In practice that would
mean that all states have to be constructed, which we wanted to avoid by using
the abstraction in the first place. One solution is instead to use an approximation
of the abstraction, where abstract states are computed on-the-fly during model
checking. Whenever the model checker explores a transition, the abstract rep-
resentation of the resulting state is computed and compared to already visited
states. In principle this means that for each set of concrete states mapping to
the same abstract state, the first encountered state in the set is selected as a
representative for the whole set. The abstract state space in Fig. 5 has two such
sets, {S1,S4} and {S2,S3}. There are problems with such an approximation; the
problems stem from the fact that this particular abstraction approximation is an
underapproximation. The result is that we can get, as shown in the example, false
positives. A false positive is a situation where a negative result is falsely reported
as a positive result. In an explicit state model checker this means that a bad state
might go undetected. The following example illustrates this problem.

†This is more general, the reasoning holds for all LTL properties [HR00] since they implicitly
quantify over all paths, however, it does not hold for example for all CTL properties [HR00].

16 Introduction

Example: In the state spaces in Fig. 5 bad states are marked with an asterisk
(*). We see that S3 is a bad state, and thus also AS2. In the initial state S1, the
model checker picks either T1 or T2 first, and depending on the choice either S2
or S3 is going to represent {S2,S3} in AS2. I.e. if T1 is explored first, and thus
S2 is the representative of {S2,S3}, then later when T2 is explored (leading to S3)
S3 is regarded as already visited and thus the bad state is missed.

8 Contributions

In this section we summarize the main contributions of the thesis. For each
contribution there is also a pointer to the paper(s) describing the contribution in
greater detail:

• Finding errors in an existing Erlang implementation – We found, analyzed
and explained two bugs in an existing Erlang implementation. The bugs
were non-trivial in that they only occurred in particular configurations.
[Paper 1]

• Trace abstractions – We developed methods for analyzing trace data, we
presented a language for expressing abstractions as well as means to check
LTL-properties [HR00] for a given (abstract) trace. [Paper 1]

• Erlang implementation of new leader election algorithm – Having failed to
repair the existing leader election implementation, we implemented a new
algorithm. To the best of our knowledge, the algorithm is a novel leader
election algorithm. The algorithm is based on Stoller’s algorithm with a
few Erlang-inspired modifications. The requirements on the implementation
were slightly different from the original algorithm, where the main change
was to sacrifice message complexity for fewer re-elections. In the standard
Erlang setting, sending messages is cheap, but changing the leader is not.
The implementation has withstood very thorough testing and a variety of
model checking approaches. The implementation is available as open source.
[Paper 1, Paper 2]

• Distributed Erlang semantics – There existed an Erlang semantics for the
single node case, but as the bugs in the leader election implementation
clearly showed there are significant semantic differences between the single
node and the distributed case. We present a small step operational se-
mantics for distributed Erlang in the paper [SF07]. (The paper [SF07] is a
revised version, where we have made important additions and corrected a
few minor errors, of an earlier paper [CS05].) [Paper 3]

• Model checker – We have developed our own customized mode checker
McErlang. Although the model checking was not successful for the leader
election example, it has worked out well for other applications. The Erlang
model checker McErlang has been used in several case studies with good
results. [Paper 4]

9 – Thesis overview 17

• Proof of Stoller’s algorithm – Even state of the art model checkers could
not handle the enormous state space produced by the leader election algo-
rithm. Instead, we used a FOL model and have proved the important safety
property ”There is never more than one leader” for Stoller’s leader election
algorithm using automated theorem provers with some interactive steps. It
is, however, still work in progress to prove the correctness of the adapted
version of the algorithm present in the new implementation. [Paper 5]

• Algorithm verification method – The verification method used to prove
Stoller’s leader election algorithm is more general, and should be applicable
to other similar algorithms. Since we have only tested with two different ex-
amples (Stoller’s leader election algorithm and a toy example with resource
allocation), we can only speculate on the true generality, but there are no
explicit limitations. [Paper 5]

• Counter examples in inductive proofs – One specific part of the proof meth-
odology is the search for counter examples. The situation that is handled
is when one is trying to use a theorem prover to inductively prove that
an invariant holds. The problem is the case when the invariant cannot be
proved (i.e., the theorem prover does not give an answer). Then it is unclear
how to proceed since the situation could be either one of four possible
cases. The contribution is two-fold: we have identified and explained the
four different cases, and we have implemented and evaluated a QuickCheck
driven search for counter examples in two of the four cases. (One case
remains future work. In the fourth case, where the theorem prover is unable
to prove a provable formula, it is rather unnecessary to search for a counter
example.) [Paper 6]

9 Thesis overview

The thesis is based on six papers, each discussing a topic in software testing/model
checking/formal verification. The thesis is divided into seven main sections; one
section for the introduction and one section each for the six papers.

Paper 1 – Semi-Formal Development of a Fault-Tolerant Leader Elec-

tion Protocol in Erlang The background was a promising testing technique
for Erlang [AF02]. The main idea is to run the tested implementation with
generated stimuli; thereby creating traces of events and states. Then, using an
abstraction function specified by the user, we generate abstract state transition
diagrams of the system. In the paper we improve the representation of abstraction
functions by introducing a separate language for expressing abstraction functions.
We also improve trace collection and add LTL-property checking for the abstract
traces. The improvements are tested on two different implementations (one previ-
ously existing and one new) of a leader election algorithm. The described method
is generally applicable to Erlang programs; in particular to software written using
OTP Erlang component library [Tor97].

18 Introduction

Paper 2 – A New Leader Election Implementation In paper 1 we demon-
strate that the existing leader election algorithm [Wig03] is faulty. We were unable
to repair the this implementation in a satisfying and correct way. Therefore we
decided to write a new implementation. The paper describes the algorithm used
in the implementation, which is an adapted version of Stoller’s leader election
algorithm [Sto97]. The paper explains the adaptations, and the reasons for the
adaptations, in detail. The paper also describes the extensive testing applied to
the new implementation.

Paper 3 – A More Accurate Semantics for Distributed Erlang In the
conclusion of paper 1, we argue that the errors found in the existing leader elec-
tion implementation only occurs in a distributed setting. This implies that there
is a fundamental difference between the single-node and the multi-node setting.
However, this difference could not be modeled by the existing formal semantics
for Erlang. We used Fredlund’s Erlang semantics [Fre01], which accurately model
single-node systems, as a starting point and extended it to a semantics for dis-
tributed Erlang. The claim is that the distributed semantics is intuitive and
correctly models the behavior of a distributed Erlang system. The paper explain
the semantics in detail.

Paper 4 – McErlang: A Model Checker for a Distributed Functional

Programming Language Earlier attempts to model check Erlang systems,
for example [ABS04], were based on Fredlund’s single-node semantics [Fre01].
The paper introduces McErlang, a model checker based on the distributed Er-
lang semantics. McErlang has full Erlang data type support, support for general
(multi-node) process communication, node semantics, fault detection and fault
tolerance. McErlang can verify programs written using the OTP Erlang compo-
nent library. McErlang is itself implemented in Erlang and also uses Erlang as
its specification language. This ’all in Erlang’-approach is shown to be beneficial,
especially important is the possibility to treat executable models interchangeably
as programs and data.

Paper 5 – A Semi-Automatic Correctness Proof Procedure applied to

Stoller’s Leader Election Algorithm Although McErlang was a success, it
could not handle the leader election implementation. (Except for, for unconvinc-
ing bounds on the number participants, etc.) We also tried a few other model
checking approaches, including model checking using SPIN [Hol97], with negative
result. Instead we used a first-order logic model and automated theorem provers
to prove safety properties about the Stoller’s leader election algorithm. The paper
describes both the proof procedure and all the details of the actual proof.

Paper 6 – Finding Counter Examples in Induction Proofs This paper is
closely related to the proof procedure in paper 5. The most difficult part of using
the proof procedure is to design the needed invariants. In particular problem
arises when an invariant cannot be proved. The situation could be either one
of four cases: (1) the invariant is invalid, (2) the invariant is valid, but too

REFERENCES 19

weak, (3) the invariant is valid, but the current axiomatization of the background
theories is too weak, and (4) the invariant is valid and should be provable, but
the theorem prover does not have enough resources to do so. Paper 6 describes
the implications of each case, and introduces a counter example search to reveal
cases (1) and (2). This search for counter example is similar in spirit to the
introduction of random testing in Isabelle [BN04], and we claim that it increases
the productivity significantly.

References

[Abb90] R.J. Abbott. Resourceful systems for fault tolerance, reliability,
and safety. ACM Comp. Surv., 22(1):35–68, 1990.

[ABB+05] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hhnle,
W. Menzel, W. Mostowski, A. Roth, S. Schlager, and P.H. Schmitt.
The KeY tool. Softw. and Systems Modeling, 4(1):32–54, 2005.

[ABD04] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified
Erlang program for resource locking. Int. J. Softw. Tools Technol.
Transf., 5(2):205–220, 2004.

[ABS04] T. Arts, C. Benac Earle, and J.J. Sánchez Penas. Translating Er-
lang to mCRL. In Fourth Int. Conf. on Application of Concurrency
to System Design, p. 135–144, Hamilton (Ontario), Canada, June
2004. IEEE Computer Society.

[ACHS05] T. Arts, K. Claessen, J. Hughes, and H. Svensson. Testing imple-
mentations of formally verified algorithms. In SERPS05: Proc. of
the Fifth Conf. on Softw. Eng. Reserch and Practice in Sweden, p.
103–112. Mälardalen University Press, 2005.

[ACS05] Thomas A. K. Claessen, and H. Svensson. Semi-formal develop-
ment of a fault-tolerant leader election protocol in Erlang. In LNCS,
vol. 3395, p. 140–154, Feb 2005.

[ADGF01] M.K. Aguilera, C. Delporte-Gallet, and H. Fauconnier. Stable
leader election. In Distributed Comp. 15th Int. Conf. DISC2001,
vol. 2180 of LNCS. Springer-Verlag, October 2001.

[AF02] T. Arts and L.-Å. Fredlund. Trace analysis of Erlang programs. In
Proc. of the 2002 ACM SIGPLAN workshop on Erlang, p. 16–23.
ACM Press, 2002.

[AH03] T. Arts and J. Hughes. Erlang/QuickCheck. In Ninth Int. Er-
lang/OTP User Conf., Nov. 2003.

[Ang80] D. Angluin. Local and global properties in networks of processors
(extended abstract). In STOC ’80: Proc. of the 12th annual ACM
symp. on Theory of Comp., p. 82–93, New York, NY, USA, 1980.
ACM.

20 REFERENCES

[Arm03] J. Armstrong. Making reliable distributed systems in the presence of
software errors. PhD thesis, Royal Institute of Technology, Stock-
holm, Sweden, Dec. 2003.

[Arm07] J. Armstrong. Programming Erlang – Software for a Concurrent
World. The Pragmatic Programmers,
http://books.pragprog.com/titles/jaerlang, 2007.

[AWWV96] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Con-
current Programming in Erlang. Prentice-Hall, Englewood Cliffs,
New Jersey, USA, second edition, 1996.

[Ban] Bandera – a model checker tool set for Java.
http://bandera.projects.cis.ksu.edu/index.shtml.

[Bar95] J. Barnes. Programming in Ada95. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1995.

[BB02] A. Benveniste and G. Berry. The synchronous approach to reactive
and real-time systems. Readings in hardware/software co-design,
p. 147–159, 2002.

[BBS01] J. Barnat, L. Brim, and J. Stř́ıbrná. Distributed LTL model-
checking in SPIN. In SPIN ’01: Proc. of the 8th Int. SPIN Work-
shop on Model Checking of Softw., p. 200–216, New York, NY, USA,
2001. Springer-Verlag New York, Inc.

[Bei90] B. Beizer. Software testing techniques (2nd ed.). Van Nostrand
Reinhold Co., New York, NY, USA, 1990.

[BFVY96] F.J. Budinsky, M.A. Finnie, J.M. Vlissides, and P.S. Yu. Automatic
code generation from design patterns. IBM Syst. J., 35(2):151–171,
1996.

[BJ03] J. Blom and B. Jonsson. Automated test generation for industrial
Erlang applications. In ERLANG ’03: Proc. of the 2003 ACM
SIGPLAN workshop on Erlang, p. 8–14, New York, NY, USA, 2003.
ACM Press.

[BKKM96] J. Brunekreef, J.-P. Katoen, R. Koymans, and S. Mauw. Design and
analysis of dynamic leader election protocols in broadcast networks.
Distributed Comp., 9(4):157–171, 1996.

[BKM96] B. Brock, M. Kaufmann, and J.S. Moore. ACL2 theorems about
commercial microprocessors. In FMCAD ’96: Proc. of the First
Int. Conf. on Formal Methods in Comp.-Aided Design, p. 275–293,
London, UK, 1996. Springer-Verlag.

[BLvdPW08] S. Blom, B. Lisser, J. van de Pol, and M. Weber. A database
approach to distributed state space generation. Electron. Notes
Theor. Comp. Sci., 198(1):17–32, 2008.

REFERENCES 21

[BM75] R.S. Boyer and J.S. Moore. Proving theorems about LISP func-
tions. J. of the ACM, 22(1):129–144, 1975.

[BN04] S. Berghofer and T. Nipkow. Random testing in isabelle/hol. In
SEFM ’04: Proc. of the Softw. Eng. and Formal Methods, Second
Int. Conf., p. 230–239, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[BP89] J.E. Burns and J.K. Pachl. Uniform self-stabilizing rings. ACM
Trans. Program. Lang. Syst., 11(2):330–344, 1989.

[CAB+98] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D.
Notkin, and J.D. Reese. Model checking large software specifica-
tions. IEEE Trans. Softw. Eng., 24(7):498–520, 1998.

[CF99] F. Cristian and C. Fetzer. The timed asynchronous distributed
system model. IEEE Trans. Parallel Distrib. Syst., 10(6):642–657,
1999.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement. In
CAV ’00: Proc. of the 12th Int. Conf. on Comp. Aided Verification,
p. 154–169, London, UK, 2000. Springer-Verlag.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and
abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542,
1994.

[CGP00] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. The
MIT Press, 2000.

[CGR88] R.F. Cmelik, N.H. Gehani, and W.D. Roome. Fault tolerant con-
current C: a tool for writing fault tolerant distributed programs.
Fault-Tolerant Comp. 1988. FTCS-18, Digest of Papers., 18th Int.
Symp. on, p. 56–61, 27-30 Jun 1988.

[CH02] K. Claessen and J. Hughes. Testing monadic code with QuickCheck.
In Haskell ’02: Proc. of the ACM SIGPLAN workshop on Haskell,
p. 65–77, New York, NY, USA, 2002. ACM Press.

[CR79] E. Chang and R. Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun.
ACM, 22(5):281–283, 1979.

[CS05] K. Claessen and H. Svensson. A semantics for distributed Erlang.
In ERLANG ’05: Proc. of the 2005 ACM SIGPLAN workshop on
Erlang, p. 78–87, New York, NY, USA, 2005. ACM Press.

[CT91] R. Carver and K.-C. Tai. Replay and testing for concurrent pro-
grams. IEEE Softw., 8(2):66–74, 1991.

22 REFERENCES

[Des07] J.P. Desmond. The software 500: Applications go worldwide. World
Wide Web electronic publication, http://www.softwaremag.com/-
L.cfm?Doc=1085-10/2007, 2007.

[DF98] M. Dam and L.-Å. Fredlund. On the verification of open distributed
systems. In SAC ’98: Proc. of the 1998 ACM symp. on Applied
Comp., p. 532–540, New York, NY, USA, 1998. ACM Press.

[DFG98] M. Dam, L.-Å. Fredlund, and D. Gurov. Toward parametric ver-
ification of open distributed systems. In COMPOS’97: Revised
Lectures from the Int. Symp. on Compositionality: The Significant
Difference, p. 150–185, London, UK, 1998. Springer-Verlag.

[DGRV00] M. Devillers, D. Griffioen, J. Romijn, and F. Vaandrager. Verifica-
tion of a leader election protocol: Formal methods applied to IEEE
1394. Formal Methods in System Design, 16(3):307–320, 2000.

[DIM97] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing
leader election. IEEE Trans. Parallel Distrib. Syst., 8(4):424–440,
1997.

[DJK+99] S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. Lott, G.C.
Patton, and B.M. Horowitz. Model-based testing in practice. In
ICSE ’99: Proceedings of the 21st international conference on Soft-
ware engineering, p. 285–294, Los Alamitos, CA, USA, 1999. IEEE
Computer Society Press.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional
distributed algorithm for extrema finding in a circle. J. Algorithms,
3(3):245–260, 1982.

[EFD05] C. B. Earle, L.-Å. Fredlund, and J. Derrick. Verifying fault tolerant
Erlang programs. In ERLANG ’05: Proc. of the 2005 ACM SIG-
PLAN workshop on Erlang, p. 26–34, New York, NY, USA, 2005.
ACM Press.

[Eri06] Ericsson. Erlang goes multi-core. World Wide Web electronic publi-
cation, http://www.ericsson.com/technology/opensource/erlang/-
news/archive/erlang goes multi core.shtml, 2006.

[Erl07] Proc. of the Fifth ACM SIGPLAN Erlang Workshop, 2007.

[FB97] G. Fink and M. Bishop. Property-based testing: a new approach
to testing for assurance. SIGSOFT Softw. Eng. Notes, 22(4):74–80,
1997.

[FGK97] L.-Å. Fredlund, J.F. Groote, and H. Korver. Formal verification
of a leader elction protocol in process algebra. Theoretical Comp.
Science, 177(2):459–486, 1997.

REFERENCES 23

[FGN01] L.-Å. Fredlund, D. Gurov, and T. Noll. Semi-automated verification
of Erlang code. In ASE ’01: Proc. of the 16th IEEE Int. Conf. on
Automated Softw. Eng., p. 319, Washington, DC, USA, 2001. IEEE
Computer Society.

[FGN+03] L.-Å. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G.
Chugunov. A verification tool for Erlang. Int. J. on Softw. Tools
for Technol. Transf., 4(4):405–420, August 2003.

[Fra82] R. Franklin. On an improved algorithm for decentralized extrema
finding in circular configurations of processors. Commun. ACM,
25(5):336–337, 1982.

[Fre01] L.-Å. Fredlund. A Framework for Reasoning about Erlang Code.
PhD thesis, Royal Institute of Technology, Stockholm, Sweden,
2001.

[FS07] L-Å. Fredlund and H. Svensson. McErlang: A model checker for
a distributed functional programming language. In Proc. of Int.
Conf. on Functional Programming (ICFP). ACM SIGPLAN, 2007.

[FTW06] L. Frantzen, J. Tretmans, and T.A.C. Willemse. A symbolic frame-
work for model-based testing. In K. Havelund, M. Nunez, G. Rosu,
and B. Wolff, ed., Formal Approaches to Softw. Testing and Run-
time Verification - FATES/RV’06, vol. 4262 of LNCS, p. 40–54.
Springer-Verlag, 2006.

[GM82] H. Garcia-Molina. Elections in a distributed computing system.
IEEE Trans. on Comp., C-31(1):48–59, January 1982.

[GM96] H. Garavel and L. Mounier. Specification and verification of var-
ious distributed leader election algorithms for unidirectional ring
networks. Science of Comp. Programming, 29(1-2):171–197, 1996.

[Ham94] R. Hamlet. Random testing. In J.Marciniak, ed., Encyclopedia of
Software Engineering, p. 970–978. Wiley, 1994.

[Har99] J. Harrison. A machine-checked theory of floating point arithmetic.
In TPHOLs ’99: Proc. of the 12th Int. Conf. on Theorem Proving
in Higher Order Logics, p. 113–130, London, UK, 1999. Springer-
Verlag.

[Har01] D. Harel. From play-in scenarios to code: An achievable dream.
Comp. J., 34(1):53–60, 2001.

[HBUP03] H. Hallal, S. Boroday, A. Ulrich, and A. Petrenko. An automata-
based approach to property testing in event traces. In Testing of
Commun. Systems, vol. 2644 of LNCS, p. 180–196. Springer Berlin
/ Heidelberg, 2003.

24 REFERENCES

[HJ00] M. Huisman and B. Jacobs. Java program verification via a Hoare
logic with abrupt termination. In FASE ’00: Proc. of the Third
Int. Conf. on Fundamental Approaches to Softw. Eng., p. 284–303,
London, UK, 2000. Springer-Verlag.

[HM85] M. Hennessy and R. Milner. Algebraic laws for nondeterminism
and concurrency. J. ACM, 32(1):137–161, 1985.

[Hoa62] C.A.R. Hoare. Quicksort. The Comp. J., 5(1):10–16, 1962.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969.

[Hol97] G.J. Holzmann. The model checker SPIN. Softw. Eng., 23(5):279–
295, 1997.

[Hop81] G.M. Hopper. The first bug. Annals of the History of Comp.,
3(3):285–286, July–Sept. 1981.

[HR00] M. Huth and M. Ryan. Logic in Computer Science. Cambridge
University Press, 2nd edition, 2000.

[HS02] G.J. Holzmann and M.H. Smith. An automated verification method
for distributed systems software based on model extraction. IEEE
Trans. Softw. Eng., 28(4):364–377, 2002.

[Hua93] S.-T. Huang. Leader election in uniform rings. ACM Trans. Pro-
gram. Lang. Syst., 15(3):563–573, 1993.

[Huc99] F. Huch. Verification of Erlang programs using abstract interpre-
tation and model checking. In ICFP ’99: Proc. of the Fourth ACM
SIGPLAN Int. Conf. on Functional Programming, p. 261–272, New
York, NY, USA, 1999. ACM Press.

[Huc01] F. Huch. Model checking erlang programs - abstracting the context-
free structure. In Workshop on Softw. Model Checking (in conn. w.
CAV’01), vol. 55 of ENTCS, p. 304–321, 2001.

[Huc02] F. Huch. Model checking erlang programs - abstracting recursive
function calls. In Int. Workshop on Functional and (Constraint)
Logic Prog. Selected Papers, vol. 64 of ENTCS, p. 195–219, 2002.

[Hug07] J. Hughes. QuickCheck testing for fun and profit. In Michael Hanus,
ed., Practical Aspects of Declarative Languages, vol. 4354 of LNCS,
p. 1–32. Springer-Verlag, Berlin Heidelberg, 2007.

[Ins02] Research Triangle Institute. The economic impacts of inadequate
infrastructure for software testing. Study commissioned by the De-
partment of Commerce’s National Institute of Standards and Tech-
nology (NIST), 2002.

REFERENCES 25

[IR90] A. Itai and M. Rodeh. Symmetry breaking in distributed networks.
Inf. Comput., 88(1):60–87, 1990.

[KM08] M. Kaufmann and J.S. Moore. ACL2 homepage. World Wide Web
electronic publication, 2008.

[Knu77] D.E. Knuth. Notes on the van Emde Boas construction of priority
queues: An instructive use of recursion. Informally distributed
memo, March 1977.

[LeL77] G. LeLann. Distributed systems – towards a formal approach. In
B. Gilchrist, ed., Information Processing 77, p. 155–160. North-
Holland, 1977.

[Lyu95] M.R. Lyu, ed. Software Fault Tolerance. John Wiley & Sons, 1995.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Norwell, MA, USA, 1993.

[MH89] C.E. McDowell and D.P. Helmbold. Debugging concurrent pro-
grams. ACM Comp. Surv., 21(4):593–622, 1989.

[Mod] Modex. http://cm.bell-labs.com/cm/cs/what/modex/index.html.

[Moo03] J.S. Moore. Proving theorems about java and the jvm with acl2.
In M. Broy and M. Pizka, ed., Models, Algebras and Logic of Eng.
Softw., p. 227–290. IOS Press, Amsterdam, 2003.

[Mye79] G.J. Myers. Art of Software Testing. John Wiley & Sons, Inc., New
York, NY, USA, 1979.

[Nol01] T. Noll. A rewriting logic implementation of Erlang. In M. v.d.
Brand and D. Parigot, ed., Proc. of First Workshop on Lang. Desc.
Tools and Applications (ETAPS/LDTA’01), vol. 44 of Electronic
Notes in Theoretical Comp. Science. Elsevier Science Publishers,
2001.

[NPW02] T. Nipkow, L.C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, vol. 2283 of LNCS. Springer,
2002.

[NR05] T. Noll and C.K. Roy. Modeling erlang in the pi-calculus. In Proc.
of the ACM SIGPLAN 2005 Erlang Workshop, p. 72–77. ACM,
2005.

[OA99] J. Offutt and A. Abdurazik. Generating tests from UML specifi-
cations. In R. France and B. Rumpe, ed., UML’99 - The Unified
Modeling Language. Beyond the Standard. Second Int. Conf. Proc.,
vol. 1723, p. 416–429. Springer, 1999.

26 REFERENCES

[ORS92] S. Owre, J.M. Rushby, and N. Shankar. PVS: a prototype verifica-
tion system. In CADE-11: Proc. of the 11th Int. Conf. on Auto-
mated Deduction, p. 748–752, London, UK, 1992. Springer-Verlag.

[Pel98] D. Peled. Ten years of partial order reduction. In CAV ’98: Proc. of
the 10th Int. Conf. on Comp. Aided Verification, p. 17–28, London,
UK, 1998. Springer-Verlag.

[Pet82] G.L. Peterson. An O(n logn) unidirectional algorithm for the circu-
lar extrema problem. ACM Trans. Program. Lang. Syst., 4(4):758–
762, 1982.

[PST91] B. Potter, J. Sinclair, and D. Till. An introduction to formal spec-
ification and Z. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
1991.

[Rom01] J. Romijn. A timed verification of the IEEE 1394 leader election
protocol. Formal Methods in System Design, 19(2):165–194, 2001.
special issue of FMICS 1999.

[RV01] J.A. Robinson and A. Voronkov, ed. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

[SC96] P. Stocks and D. Carrington. A framework for specification-based
testing. IEEE Trans. Softw. Eng., 22(11):777–793, 1996.

[SF07] H. Svensson and L.-Å. Fredlund. A more accurate semantics for
distributed Erlang. In Erlang ’07: Proc. of the 2007 SIGPLAN
Erlang Workshop, p. 43–54, New York, NY, USA, 2007. ACM.

[Sin96] G. Singh. Leader election in the presence of link failures. In IEEE
Trans. on Parallel and Dist. Syst., Vol 7. IEEE computer society,
1996.

[Som06] I. Sommerville. Software Engineering. Pearson Education, 8th
edition, 2006.

[Sto97] S.D. Stoller. Leader election in distributed systems with crash fail-
ures. Technical Report 481, Computer Science Dept., Indiana Uni-
versity, May 1997. Revised July 1997.

[Sto00] S.D. Stoller. Leader election in asynchronous distributed systems.
IEEE Trans. on Comp., 49(3):283–284, March 2000.

[Tan96] A. Tanenbaum. Computer networks (3rd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1996.

[TB99] J. Tretmans and A. Belinfante. Automatic testing with formal
methods. In EuroSTAR’99: 7th European Int. Conf. on Softw.
Testing, Analysis & Review, Barcelona, Spain, November 8–12,
1999. EuroStar Conferences, Galway, Ireland.

REFERENCES 27

[Tel00] G. Tel. Introduction to Distributed Algorithms. Cambridge Univer-
sity Press, 2000.

[Tor97] S. Torstendahl. Open telecom platform. Ericsson Review, no.
01/1997.

[TP00] W. Torres-Pomales. Software fault tolerance: A tutorial. Technical
report, NASA Langley Technical Report Server, 2000.

[Tre92] J. Tretmans. A Formal Approach to Conformance Testing. PhD
thesis, University of Twente, Enschede, The Netherlands, 1992.

[Use99] Y.S. Usenko. A comparison of spin and the muCRL toolset on HAVi
leader election protocol. In 279, p. 23. Centrum voor Wiskunde en
Informatica (CWI), ISSN 1386-369X, 31 1999.

[Val98] A. Valmari. The state explosion problem. In Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the volumes are based on
the Advanced Course on Petri Nets, p. 429–528, London, UK, 1998.
Springer-Verlag.

[Wei81] M. Weiser. Program slicing. In ICSE ’81: Proc. of the Fifth Int.
Conf. on Softw. Eng., p. 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[Wid04] M. Widera. Flow graphs for testing sequential Erlang programs.
In ERLANG ’04: Proc. of the 2004 ACM SIGPLAN workshop on
Erlang, p. 48–53, New York, NY, USA, 2004. ACM Press.

[Wig03] U. Wiger. Fault tolerant leader election, 2003.
http://www.erlang.org/.

[Wik94] C. Wikström. Distributed programming in Erlang. In PASCO’94,
First Int. Symp. on Parallel Symbolic Computation, Linz, Austria,
Dec 1994.

Paper 1

Semi-Formal Development of a Fault-Tolerant
Leader Election Protocol in Erlang

This paper was written together with Thomas Arts and Koen Claessen. The
paper was published at the Workshop ’Formal Approaches to Testing of Software’
(FATES), in Linz, Austria, September 2004. The paper included here is a slightly
updated and reformatted version.

1 – Introduction 31

Semi-Formal Development of a Fault-Tolerant
Leader Election Protocol in Erlang

Thomas Arts1, Koen Claessen2 , and Hans Svensson2

1 IT University in Göteborg, Box 8718, 402 75 Göteborg, Sweden
thomas.arts@ituniv.se

2 Chalmers University of Technology, Göteborg, Sweden
{koen,hanssv}@cs.chalmers.se

Abstract

We present a semi-formal analysis method for fault-tolerant distributed algorithms
written in the distributed functional programming language Erlang. In this set-
ting, standard model checking techniques are often too expensive or too limiting,
whereas testing techniques often do not cover enough of the state space.

Our idea is to first run instances of the algorithm on generated stimuli, thereby
creating traces of events and states. Then, using an abstraction function specified
by the user, our tool generates from these traces an abstract state transition
diagram of the system, which can be nicely visualized and thus greatly helps
in debugging the system. Lastly, formal requirements of the system specified in
temporal logic can be checked automatically to hold for the generated abstract
state transition diagram. Because the state transition diagram is abstract, we
know that the checked requirements hold for a lot more traces than just the traces
we actually ran.

We have applied our method to a commonly used open-source fault-tolerant
leader election algorithm, and discovered two serious bugs. We have also imple-
mented a new algorithm that does not have these bugs.

1 Introduction

The company Ericsson has developed a telecommunication switch called the AXD
301 [7]. The control software of this switch is written in the distributed functional
programming language Erlang [2]. A major challenge in the development of the
switching software is to get the almost one million lines of code tested in the
relatively short time between releases of the product. A typical time consuming
and difficult activity is testing fault-tolerance properties. The particular fault-
tolerance we investigate here is the effect of taking down parts of a switch (because
of maintenance or hardware problems) and restarting them later in time.

We report on our case study to take away part of the testing load by analyzing
a critical part of the code by semi-formal methods. The part we looked at is a
leader election protocol. In the AXD 301, a module of about 2000 lines of code
implements both a leader election protocol and a resource manager. In order to
be able to deal with the complexity of this module, Ericsson’s engineers rewrote
the module in two parts, separating the resource manager and the leader election
protocol. The simplified resource manager has been formally verified in earlier
work by using a model checking approach [3]. The slightly generalized and cleaned

32 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

up leader election protocol contains about 800 lines of code and is available as
open source [21].

The leader election problem is a well-known and extensively studied problem.
The objective of the protocol is for the processes among themselves to establish
a designated process, called the leader. Leader election protocols have been de-
signed for many different settings. In our case, we are interested in a solution
that is fault-tolerant. Fault-tolerance is based on communication links breaking
or on processes that may die or revive again at any point in time. If the currently
elected leader dies or is disconnected, the surviving processes need to elect a new
leader amongst them. However, during the election process, other processes may
cease to work. We consider asynchronous communication with buffered messages.
Among the many articles published on the leader election protocol [9, 6, 16, 17, 1],
we know of only a few that address all these problems. It was actually hard to
find a paper describing exactly the setting that Erlang uses: asynchronous mes-
sage passing, reliable communication channels between every pair of processes,
possible failure and/or revival of a process at any point in time and a reliable
notification mechanism of when processes die.

The algorithm used in the leader election protocol implementation we analyzed
was an adaptation of a previously published algorithm [16]. There is a fixed set
of processes that can die arbitrarily, and they have to negotiate a leader among
them. The first process that comes up has priority to become leader, in order
to have a selected leader as soon as possible. Only when the current leader dies
should a new leader be elected.

There are two basic properties that the leader election implementation needs
to obey: (1) Safety — it is never the case that there are two or more leaders at
the same time; (2) Liveness — in a stable situation (i.e. processes stop dying
for a while), a leader will eventually be elected.

We have considered using model checking techniques to formally verify these
properties. However, we found that dealing with the fault-tolerance leads to state-
space explosion in the model checkers used, which severely limited the number of
processes we could deal with. More informal methods based on testing seemed to
be necessary.

The Erlang runtime system has built-in support for generating traces of the
events occurring during execution. With simple means, one can specify what one
considers an event (sending a message, receiving a message, a process dying, a
function call, etc.). Tracing can be switched on and off on demand. Studying
the traces reveals not only that an error occurred, but can also demonstrate the
chain of events that led to the error.

We have developed a methodology for semi-formal analysis of such traces of
distributed systems (c.f. [5]). The idea is to first produce traces of the system by
generating stimuli, as in testing. Then, we build abstractions of the traces with
the help of an abstraction function specified by the user. An abstraction func-
tion basically maps data structures in the events and states to different (simpler)
representations. An abstraction reduces the number of states, by mapping the
actual concrete states onto a set of abstract states. This also allows us to detect
cyclic behaviour in the trace, since different concrete states can be mapped to the

2 – Methodology 33

same abstract state. The accompanying abstract state transition diagram con-
cisely indicates the different abstract states visited during an execution, together
with the messages sent and received during the transitions. A path through such
a state diagram represents a trace, but it is not necessarily the case that the trace
is a possible trace for the system since the diagram is really a diagram for an
abstracted model of the system.

We propose to generate traces of simple instances of the software first, such as
a reduced number of processes or executing only one possible scenario. For these
traces it is easy to define abstraction functions. The same functions can be used
for more complicated instances of the software.

The generated abstractions are used in two ways: (1) They increase under-
standing of the system, and can help to more easily spot the causes of bugs (as
explained in Section 2.4); (2) We can formally verify properties of the abstraction,
thus ensuring that the desired properties actually hold for all paths through the
abstract state diagram (as explained in Section 2.7).

When we applied our methodology on the implementation of the leader elec-
tion algorithm, we discovered two serious bugs. Failing to correct the bugs in
an efficient way, we also tried to implement a different algorithm for leader elec-
tion. This implementation is based on [17] and was tested with the methodology
described in this paper without finding any errors.

2 Methodology

In this section, we describe our methodology in more detail. We do this by
concretely following the analysis of a leader election algorithm in chronological
order. We start by describing the original algorithm, how we generate stimuli to
obtain system traces, and how we use abstractions to find bugs. Then, we describe
our own implementation of leader election, where all of our analyses failed to find
any errors, and discuss coverage issues related to our method.

2.1 Fault-Tolerant Leader Election Version 1

The Erlang code for the algorithm we started with is publicly available on the
web [21]. However, for simplification purposes we actually analyze a cut-down
version of this code here. All code we used in this case study is available on the
web [18].

The implementation is loosely based on a fault-tolerant leader election algo-
rithm described in [16], but with an adaptation in order to deal with faults being
dying processes instead of failing communication links.

The participating processes behave as follows. When the protocol is started
each process is given a list of all the participation processes; the position in this
list is also the priority order for the processes. A process always plays one of the
following four roles: candidate, captured, surrendered or elected. When a process
is started it is always a candidate to become a leader. The first thing it does is
to try to capture all the other processes, by broadcasting a ‘capture’-message. If
another candidate-process receives a ‘capture’-message, the receiving process will

34 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

take action based on the priority; it will ignore messages from processes with lower
priority, and accept messages from processes with higher priority by sending an
‘accept’-message. After accepting, the process changes its role to being captured.
A captured process will ignore ‘capture’-messages and forward ‘accept’-messages
to the process that has captured it. Whenever a candidate has captured more
than half of the participating living processes, it will announce itself as the leader
by broadcasting an ‘elect’-message. If a process receives an ‘elect’-message it will
immediately surrender.

Whenever the leader dies (processes discover this since the Erlang runtime
system will send a ‘DOWN’ message to all interested processes), a new election
round is started. Whenever a process revives, this process will be notified of the
(possible) presence of a leader via an ‘elect’-message as a reply from the leader
to the ‘capture’-message sent when the process revived.

When we got the algorithm, it was said that it would always eventually choose
a leader if more than 50% of the processes are alive and if the system is stable for
long enough. (It is though possible that a leader is elected with fewer processes
alive.) The algorithm is not supposed to elect a new leader unless the leader dies.

2.2 Generating Stimuli and Tracing

The Erlang Runtime System (ERTS) has built in functionality for tracing run-
ning processes. The tracing can be switched on or off at any given time, without
interfering with the execution. It is possible to trace sent and received messages,
function calls, process related events, process scheduling and garbage collection.
In a distributed environment there exists functionality for redirecting trace mes-
sages to a central collection process, in order to collect all trace data into the
same log file.

Stimuli for leader election implementation

In order to generate traces of the leader election protocol, a set of nodes is started,
and a leader election process is started on each node. The stimuli for a leader
election system are killing and reviving processes. A simulation process then
randomly selects which process to kill/revive by sending messages to the control
processes. How many processes can be dead at the same time is configured in the
simulator process.

In order to further test the robustness of the leader election protocol, we
implemented a variant where we also delay messages between nodes in a random
way. The idea is that this simulates slow and/or overloaded connections. Note
that this is not tested in a standard setting where one runs all nodes on the same
hardware, since communication delays will be rather static in such a setting.

Tracing the implementation

We first collected trace data for the simplified version of the leader election pro-
tocol, without using message delays. When running a leader election system

2 – Methodology 35

state0
{}

state1
{candidate}

n1 init: init
n1 sent: capture*

n1 got: ’DOWN’ n1 got: capture

state2
{elected}

n1 got: accept
n1 sent: elect*

n1 got: ’DOWN’
n1 sent: elect*

state4
{surrendered}

n1 got: elect

n1 got: ’DOWN’n1 got: capture
n1 sent: elect

state3
{down}

n1 sent: DOWN

n1 init: init
n1 sent: capture*

n1 got: ’DOWN’
n1 sent: capture*

n1 sent: DOWN

n1 got: ’DOWN’ n1 got: capture

Figure 1: Abstract trace for one process in a three node setting

with three processes, everything worked fine, but when running with five pro-
cesses something was obviously wrong; there were two processes simultaneously
announcing themselves as leader! In the search for this error, we focused on the
trace data for one of the nodes which was elected as leader. The raw trace data
contained roughly 120 states and 200 message events, a bit too many for easy
overview. The problem here is that it is easy to spot where in the trace the fault
happened (two leaders are elected), but not where in the trace the event happened
that triggered the fault (the first illegal state).

2.3 Abstractions

It is clear that in order to understand larger traces of systems, one has to reduce
the information in the trace to a relevant subset of all information. One way
of doing this is by using an abstraction (c.f. [5]). Abstractions are made by
applying an abstraction function that converts each concrete state in the trace
to an abstract state, which contains less information. Several different concrete
states from the trace might actually be mapped to the same abstract state. Thus,
we can redisplay the trace by means of a state transition diagram, where each
abstract state occurs only once, and transitions occur between two abstract states
if there exists a transition in the trace between two corresponding concrete states.
However, by doing this we also lose some context, for example a state visited
exactly N times in the actual trace is represented by a loop, and thus potentially
infinitely visits, in the abstract trace. Moreover, we can also make the sent and
received messages more abstract by applying a message abstraction function.

An example of an abstract state transition diagram of the leader election
protocol is displayed in Fig. 1. Our tool automatically generates this diagram,
given an abstraction function specified by the user. The original trace used for
this diagram is a trace of a correct execution with three leader election processes.

36 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

Here, the abstraction function on states is tracking the state of only one process,
abstracting away the states of the other processes. Moreover, it has removed all
other information in the concrete state, but for the role a process is playing. This
diagram shows that with help of an abstraction, one can get an understanding
for the basic parts of the algorithm, since it is easy to follow how the process
moves between the different roles. We call the transition diagram generated from
a trace and an abstraction function an abstract trace.

Common abstraction function building blocks

We have implemented a library of common abstraction function building blocks.
Commonly used functions are: removing parts of state data, replacing a list by
its length, focusing on the state of one process, merging states of two processes
into one state, etc. This library makes it easy to quickly define new abstraction
functions.

2.4 Abstractions for Bug Finding

The idea is now to find an abstraction function which clearly helps us to establish
where in the code the bug is located. It is hard to give a general approach
on how to come up with an appropriate abstraction. Most of the time, the
programmer has some sort of intuition about what parts of the states and which
events influence a particular bug.

In the case of our bug, we have applied the following principles. Some of
the state data, such as the list of participating nodes, is the same in all states,
and such data can often be abstracted from. In the state data there are also
two lists, containing the references to monitored nodes and the nodes which are
down. The contents of these lists are not really useful, it is enough to know how
many elements there are in the lists. So, we abstract away from these lists by
remembering their length, but not their content. Concerning the events, most of
the message data can be abstracted away, only keeping the type of a message.

The above abstraction reduces the state space from 120 to 23 states, which
is small enough to overview. It is now possible to spot the bug by just looking
at the abstract trace (Fig. 2). The state where the process is elected as leader is
dark shaded in the figure (it is in the lower left half). This state is part of a long
almost non-forking path, and it is likely that the first illegal state is to find at the
top of this path. This is indeed the case and if we zoom in on two lightly shaded
states in the upper left part of Fig. 2 the result can be seen in Fig. 3.

Let us examine more closely what happens in the bug-containing trace. The
state data contains three fields: the role, the number of nodes that are down,
and the number of monitored nodes. In the state labeled ’state9’ we can see that
the list of dead processes contain one process, and the list of monitored processes
contain four processes. Since processes should not monitor themselves, this is
clearly one process too many.

This bug turned out to be a mistake we made ourselves, when implementing
the cut-down version of the algorithm. We had not been careful enough in the

2 – Methodology 37

state0
{}

state1
{candidate,L0,L4}

n4 init: init
n4 sent: capture***

state2
{candidate,L1,L3}

n4 got: ’DOWN’

state4
{surrendered,L0,L4}

n4 got: elect

state5
{captured,L0,L4}

n4 got: capture
n4 sent: accept

state3
{surrendered,L1,L3}

n4 got: electstate7
{captured,L1,L3}

n4 got: capture
n4 sent: accept

state22
{candidate,L2,L2}

n4 got: ’DOWN’

n4 got: capture

state6
{down}

n4 sent: DOWN

state8
{surrendered,L2,L2}

n4 got: ’DOWN’

state9
{candidate,L1,L4}

n4 got: ’DOWN’
n4 sent: capture***

n4 got: ’DOWN’
n4 sent: capture***

n4 got: ’DOWN’

n4 got: capture

n4 sent: DOWN
n4 got: ’DOWN’

n4 sent: capture***
n4 sent: DOWN

n4 got: elect

n4 got: capture

n4 got: ’DOWN’

n4 init: init
n4 sent: capture***

n4 got: elect

n4 got: capture

state23
{captured,L2,L2}

n4 got: ’DOWN’

n4 got: capture

state10
{candidate,L2,L3}

n4 got: ’DOWN’

state11
{candidate,L3,L2}

n4 got: ’DOWN’

state12
{captured,L3,L2}

n4 got: capture
n4 sent: accept

n4 got: capture

state13
{surrendered,L3,L2}

n4 got: elect

n4 got: elect

state14
{surrendered,L2,L3}

n4 got: capture n4 got: ’DOWN’

state15
{surrendered,L1,L4}

n4 got: capture

state16
{candidate,L2,L4}

n4 got: ’DOWN’
n4 sent: capture***

n4 sent: DOWN

n4 got: ’DOWN’

state17
{candidate,L3,L3}

n4 got: ’DOWN’

state18
{elected,L4,L2}

n4 got: ’DOWN’
n4 sent: elect***

n4 got: capture
n4 sent: elect

state19
{surrendered,L4,L2}

n4 got: elect

n4 got: elect

state20
{surrendered,L3,L3}

n4 got: capture

state21
{surrendered,L2,L4}

n4 got: capture

n4 got: ’DOWN’
n4 sent: DOWN

n4 got: capture
n4 sent: accept

n4 got: elect

n4 got: capture

Figure 2: Abstract trace containing
bug

state3
{surrendered,L1,L3}

state8
{surrendered,L2,L2}

state9
{candidate,L1,L4}

n4 got: ’DOWN’
n4 sent: capture***

n4 got: capture

n4 got: ’DOWN’

Figure 3: Faulty part of abstract
trace

state0
:{}

state1
n4:{candidate,L0,L4}

n4 init: init
n4 sent: capture***

n4 got: capture n4 got: accept

state2
n4:{candidate,L1,L3}

n4 got: ’DOWN’

state4
n4:{surrendered,L0,L4}

n4 got: elect

state5
n4:{down}

n4 sent: DOWN

state9
n4:{captured,L0,L4}

n4 got: capture
n4 sent: accept

state3
n4:{surrendered,L1,L3}

n4 got: elect

n4 sent: DOWN

state7
n4:{candidate,L2,L2}

n4 got: ’DOWN’

n4 got: capture
n4 sent: accept

n4 got: capture

n4 sent: DOWNstate6
n4:{surrendered,L2,L2}

n4 got: ’DOWN’

n4 got: ’DOWN’
n4 sent: capture***

n4 got: ’DOWN’

n4 got: capture n4 got: elect

n4 sent: DOWN

n4 init: init
n4 sent: capture***

n4 got: capture

n4 got: capture

state8
n4:{captured,L1,L3}

n4 got: capture
n4 sent: accept

n4 got: elect

n4 got: accept
n4 sent: accept

n4 got: capture

state10
n4:{captured,L2,L2}

n4 got: ’DOWN’

n4 got: elect

n4 sent: DOWN

n4 got: ’DOWN’

n4 got: capture

n4 got: capture

Figure 4: Bug-free abstract trace

implementation and mixed up variable names. It shows, however, the usefulness
and simplicity of the approach.

If we compare the abstract trace in Fig. 2 where the bug is present with an
abstraction made from a trace where the bug is fixed in Fig. 4, one can clearly
see from the graph structure that the erroneous behaviour is gone.

The first serious bug

After correcting this bug, we collected a new set of traces. This time we initially
observed no obvious faulty behaviour, we therefore activated the random delaying
of messages in the generation of stimuli. Now we could observe a faulty behaviour,
this time in a leader election system with only three nodes, and again it was a
violation of the safety property: Two nodes simultaneously announced themselves
as leaders. Again we turned to abstract traces in the search for an explanation.
In this case we found the error to be present in situations where many nodes
failed simultaneously.

Consider the situation in Fig. 5, where initially only process A is alive and
the priority of the processes is A > B > C. If then B and C revive more or less
simultaneously and the present leader (A) is suffering from slow connections, it is
possible that the newly revived processes will agree on a leader before the present
leader is able to announce its presence.

This is indeed a serious bug, and this bug is present also in the original Erlang
code. But it is also the case that this situation will not occur if the system is

38 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

A

B

C
capture

capture

capture
capture

accept

Figure 5: Deadlock situation in leader election protocol

simulated in such a way as to always have more than half of the processes alive.
So, we continued the analysis of the protocol with less aggressive stimuli.

2.5 Sanity Checks on Abstractions

We call an abstract trace sufficient if all real traces of the system are embedded
in it. Note that by construction, it is guaranteed that at least the original trace is
embedded in the abstract trace. If all possible traces of the system are embedded,
we cover all possible executions of the system. If an abstract trace is sufficient
and a property holds for this abstract trace, then it also holds for all real traces.
However, in general we do not know whether an abstract trace is sufficient. This
is related to coverage and is discussed in Sect. 2.8.

No quiescent states

There are other problematic states where the system can get stuck. Remember
that we stimulate the system by taking down and reviving processes arbitrarily
during tracing. If there exist a state in an abstract trace that has only one
outgoing arc labeled with a ‘DOWN’-message of a process, something is wrong
as well. This means that the system is in a state where the only way to get out is
for a process to die. Since there are no guarantee that processes eventually will
die, the system is stuck in that state.

There might be two reasons for this. One is that the abstract trace is insuffi-
cient (which means that we should have chosen a different abstraction function,
or collected more trace data). The other is that the system has a deadlock in
that state (which could indicate an error). Our tool automatically reports such
quiescent states.

The second serious bug

When we investigate quiescent states for our leader election algorithm, there is
a warning for some potential deadlock nodes. Most of those can immediately be
discarded, since these are states in which there is a leader elected and hence are
not problematic states.

But there is indeed a quiescent state which indicates a real deadlock! In some
cases when the leader process dies, the remaining processes end up in a state

2 – Methodology 39

A

B

C

capture

capture

capture

DOWN capture

DOWN

Figure 6: Deadlock situation in leader election protocol

where a process is waiting for a message that is not going to be sent. Consider
the situation in Fig. 6, where all the processes are initially alive, A is the leader
and the priority of the processes is A > B > C. Then if A is killed, B and C are
notified of this and each receive a ‘DOWN’-message. Now, if the message to B is
faster than the message to C, it is possible for B to start a new election round and
send a ‘capture’-message to C before C receives the original ‘DOWN’-message. In
that case C will simply ignore the ‘capture’-message, since C (falsely) thinks that
A is alive and will answer the ‘capture’-message on behalf of C. When C finally
gets the ‘DOWN’-message, and starts its new election round B will ignore the
‘capture’-message from C with the motivation that B is higher prioritized than
C, which means that C should reply to B’s ‘capture’-message instead. Therefore
we end up in a situation where B is waiting for a message that C is not going to
send. This deadlock situation is not broken until another node dies or revives.

Thus we have discovered yet another bug in the leader election algorithm,
this bug is also present in the original, non-simplified, implementation! The error
would probably never occur when all nodes run on similar hardware, however,
our addition of delays in messages reveals a very tricky error that may show up
in very rare circumstances or when the protocol is used with nodes on different
hardware.

2.6 Fault-Tolerant Leader Election Version 2

At this point, we had discovered two serious bugs in the original leader election
implementation. We were unable to repair the implementation. So, we decided
to try to implement and analyze another algorithm for leader election. Our new
algorithm is based on ‘The Bully Algorithm for Synchronous Systems’ in [17], but
again we were forced to make some modifications in order to adapt the algorithm
to our setting.

The algorithm is quite simple and it is easy to understand how it works. When
a process comes up, it first checks whether any process of higher priority is alive.
If there is, it waits for one of these processes to become leader. If not, the process
itself decides to try to become leader. It then checks that all other processes of
lower priority either are aware of its existence, or are dead. If so, it announces
itself as leader.

The main change we made to the algorithm in the paper was to avoid restart-

40 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

ing the election process each time a process revives. This is inefficient and not
applicable to the situation where our leader election protocol is supposed to be
used. We made the change in two steps, first we changed the algorithm such that
no new election would be started if a process with lower priority than the leader
revived and later we took care of the situation where a process with higher pri-
ority than the leader revived. This second change was surprisingly complex. We
also made some changes that did not affect the functionality, but which reduced
the number of messages sent by the system. The code is available on the web
[18].

After making the changes, we collected a new set of traces. We created some
different abstractions, under which the system seems to be working correctly.

2.7 Abstractions for Verification

So far, we have been able to spot errors exhibited by our abstractions either
visually or by means of simple sanity checks. However, when the abstractions or
desired properties get more complicated, to be sure that an abstract trace obeys a
given property, an automated technique is needed. Our idea is to simply formally
check properties of the abstract traces using a model checker.

LTL properties

We formulate the properties that we want to verify in linear time logic (LTL). In
the introduction we mentioned two basic properties for a leader election protocol:
(1) There are never two elected leaders at the same time; (2) If the system is
stable, eventually a leader will be chosen. For a leader election situation with 3
nodes, the first property can be expressed in LTL as follows:

�(¬((l1 ∧ l2) ∨ (l1 ∧ l3) ∨ (l2 ∧ l3))). (1)

Here, li is defined to be true exactly when the leader election process running on
node i is the elected leader. So, the property can be read as: ”It is never the case
that node 1 and 2 are leader at the same time, or node 1 and 3, or node 2 and
3.”

The second property can be expressed as follows:

�(�(¬l1 ∧ ¬l2 ∧ ¬l3) ⇒ �♦(d1 ∨ d2 ∨ d3)). (2)

Here, li is defined as above, and di is true exactly when node i dies. This property
can be read as: ”The only traces where no leader is chosen are those traces where
process die infinitely often.”

Checking if the above properties hold for a given abstract trace is done using
standard LTL model checking techniques [10].

Improper cycles

Since we are modeling asynchronous message passing using transition systems,
the information needed to represent the real state of our system consists of more

2 – Methodology 41

node 14

n2@eniac:(candidate,L1,L1)
n1@eniac:(down)

n3@eniac:(surrendered,L1,L1)

n2 got accept

Figure 7: Loop which is not a possible trace.

than simply the state of the transition diagram. We also need to know what
messages have been sent that have not arrived yet. This problem is illustrated
by some counter examples we get of our properties. A cycle in a counter example
that contains a message M that is being received by a transition on the cycle,
but not sent by a transition of the cycle can of course never represent a real run
of the system. We call such a cycle an improper cycle.

An example is displayed in Fig. 7, which displays a situation that can not
correspond to an actual trace, since such a trace only consumes ‘accept’-messages.
This could not be an infinite chain of events, since that would mean that an infinite
number of ‘accept’-messages has to be produced. So, when we search for counter
examples in the LTL model checking algorithm, we also have to check that found
cycles contain the production of all messages that are consumed. Our property
checker automatically rejects runs that contain such improper cycles.

Results

We have checked that both properties 1 and 2 hold for abstract traces of our
new implementation of the leader election algorithm, for up to N processes. We
have done most of the testing with N = 3 and N = 5, but has also used larger
N (N = 7 and N = 10). Note that this does not mean that we have formally
verified the above properties for the system; only that all generated abstract
traces satisfied the properties.

2.8 Coverage

When discussing test-based methods, the issue of coverage is central. Coverage
methods should provide some sort of measure of how much of the system one
has exercised, and this is important for evaluating the result of the testing. In
general, coverage methods can warn of potential situations where we have not
tested enough; very seldom we can know that we have indeed tested enough.
Therefore, it is good practice to apply as many different coverage measures as
possible.

Code coverage

Erlang has a built-in module, cover, for various basic kinds of coverage analysis.
It is a very standardized set of tools, which basically provides information of how
many times each executable line of code has been accessed. The limitations of

42 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

point-coverage are well-known. For our new leader election algorithm, we have
traced the system such that we exercised all lines of the code that were supposed
to be run.

Abstract trace coverage

Instead of looking at how the actual generated traces have exercised the different
parts of the system, we can investigate coverage properties of the abstract traces.

A simple way of doing this is to specify quantitative properties of expected
events in the abstract traces. For example, for each node, how many states exist
where that node has been elected as leader? For each state and each process, how
often is it possible to reach a state where that process is dead? How much of the
theoretically reachable state space is actually reached?

For our new leader election algorithm, coverage results are of course affected
by how much tracing is done, and how the stimuli are chosen. It is interesting to
study what will happen with coverage numbers for different amount of tracing.
The measures that we considered here are the percentage of reached states and
the percentage of the states which could be left via a ‘DOWN’-transition. The
results are not very surprising, the number of reached states as well as the number
of nodes with an outgoing ‘DOWN’-transition increased with the length of the
traces. The numbers are quickly rising for small amounts of tracing, but levels
out after further tracing. In the longest traces we reached 87% of the states in the
complete state space (it is not entirely clear that all of the states could indeed be
reached). About 30% of states had an outgoing ’DOWN’-transition, a somewhat
low number. This could be explained by the fact that the stimuli system was not
fast enough, so in many situations a killing could not happen with our simulation
technique. It is possible that this can be improved with better stimuli generation.

3 Related Work

The leader election protocol has been extensively studied. There are many varia-
tions of this algorithm with different assumptions about the network topology and
other constraints. Published leader election algorithms are often proved correct on
paper, but implementations tend to divert a bit from the actual algorithm, after
which correctness is no longer guaranteed. This happened for example with both
implementations we studied, which were based on published algorithms [16, 17].

Formal verification and formal testing are supplementary techniques. We deal
with real code, whereas there have been other approaches to deal with models
of leader election algorithms. For example, the formal verification of the IEEE
1394 leader election protocol [14] has results that cannot directly be applied to
our leader election protocol, since different assumptions are made on the network
topology and detection of faults.

The two other model checking approaches that we are aware of [11, 12] deal
with algorithms that have constraints that differ from our case. Model checking
is possible because the algorithms that are verified are essentially less complex
than the one we consider.

4 – Conclusions and Future Work 43

Different from formal testing, we do not have a formal model of the software
to generate test cases (e.g. [8, 19, 20]). We more or less construct an incomplete
model from the real traces. This model is on one hand shown to the engineers for
visual verification and on the other hand input to our model checking approach.
Given that we call all our traced events observable, we obtain an abstraction in
which all real traces are observable in the abstract trace, however, not vice versa.
We use executions of the software to obtain a model for the software with a good
coverage and apply model checking techniques on the model to test the software.

Compared to the initial work on trace analysis for Erlang [5], we went further
than visualizing the traces as graphs, but we actually performed model checking
on those graphs. We improved the trace collection mechanism to simulate de-
lays in communication and to be able to handle events that occur quickly after
that tracing starts (events that we missed in the earlier setting). The latter was
necessary to be able to deal with re-starting processes.

Another project working with trace analysis is the Java PathExplorer [13].
With this tool it is possible to specify properties for Java programs in temporal
logic. The program is instrumented to emit events when executed. The properties
are then checked for the event stream. The related tool Java MultiPathExplorer
[15] takes the concept a bit further by also being able to generate more possible
traces from a single observed trace. This is done by reordering of unrelated events.
This technique could be complementary to our method that uses abstractions to
generate more possible traces.

4 Conclusions and Future Work

In this paper we describe a case-study in which we use abstraction of traces to
analyze a complex software component. By using this technique, we were able to
identify two errors in the code. We re-designed the code and verified it by the
same technique of trace abstraction, not finding any errors this time.

The described methodology of analysis and abstraction of traces is generally
applicable to Erlang programs, in particular to the kind of software that is written
in industrial projects. The primitives necessary to create a trace are part of the
standard Erlang runtime system. Generating traces is rather common testing
technology for engineers working with Erlang software. However, so far, engineers
look at the output traces as a textual long list of events. By the possibility of
visual verification, i.e. inspection of the graphs obtained from an abstracted
trace, motivation is created to write those abstraction functions [5]. Compared to
writing extra code for testing Erlang code, writing the abstraction functions really
is a minor job, since they only address data conversion of state and messages.

The first thing we achieve by using abstracted traces instead of analyzing the
real traces, is that there is less ‘noise’ in the output. With manual inspection
of a trace, it makes a difference whether one looks at 2000 long events or a few
dozens of short events. The second advantage is that the abstraction allows us
to detect cyclic behaviour, which need not necessarily be cyclic behaviour in the
original trace. For example, if one abstracts from a time stamp, one would be
able to see a certain message repetitively been sent from a certain state, whereas

44 Semi-Formal Development of a Fault-Tolerant Leader Election . . .

with the time stamp, it occurs as non-cyclic in the trace. The additional cycles
not only make the trace shorter, but they also give extra insight in the behaviour
of the software. Third, one can prove properties over the abstract traces, which
then hold for many more than just the original trace. A property proved for an
abstract trace holds for all traces that result in the same abstraction. In that
way, we achieve a larger coverage by only looking at a few traces.

Since the methodology of generating traces in general cannot guarantee full
coverage, we use it for identifying errors instead of proving correctness. By proving
properties that should hold, we know that something is wrong if we get a counter
example. If we cannot exhibit the found error in the actual trace, we might
have used an inadequate abstraction. For example, the abstract state space may
contain cycles that do not correspond to a cycle in the real code. Thus, we
can detect errors in the code, but we pay the price of possibly seeing some false
negatives. However, these false negatives can also result in a better understanding
of the system.

As mentioned in the introduction, part of the AXD 301 software was verified
by using a model checking approach. Is the same approach applicable here? First
of all, the tool to generate the state space of an Erlang program [4] could not be
directly applied to the code. The tool abstracts away from process failures, thus
we could only verify all runs in which none of the processes died. Here we could
confirm that indeed a leader was selected on all branches.

It is ongoing work to add process failure and recovery to the tool. We added it
by hand to the model we obtained from the tool, immediately spotting two major
problems. First, there is the obvious state space explosion problem, resulting
from the explosion in possible events that can happen in different orders. Second,
the way message passing is modeled by the tool is too restrictive and excludes
particular orders of events that could happen in reality. Thus, with the present
available technology, it is a real challenge to verify the properties we are interested
in with a model checker. Therefore we think that one should first apply the much
cheaper tracing technology to find errors in the code. In case one cannot find any
error, it might be beneficial to generate the whole state space and use the same
abstraction functions to reduce the model and prove the properties of interest.

Future Work

Possible future work includes automating the creation of the used abstraction
functions. We have also considered developing a design document that helps
software engineers to quickly create useful abstraction functions.

We would also like to see if it is possible to integrate our abstraction func-
tions with standard model checking techniques based on abstraction. In order
to increase the capacity (e.g. number of participating processes) of model check-
ing techniques even more, we probably even need to use symmetry reduction or
symbolic model checking.

REFERENCES 45

References

[1] M. Aguilera, C. Delporte-Gallet, and H. Fauconnier. Stable leader election.
In Distributed Computing, 15th International Conference DISC2001, volume
2180 of Lecture Notes in Computer Science. Springer-Verlag, October 2001.

[2] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Pro-
gramming in Erlang. Prentice-Hall, Englewood Cliffs, New Jersey, USA,
second edition, 1996.

[3] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified Er-
lang program for resource locking. Int. J. on Software Tools for Technology
Transfer, 2004. to appear.

[4] T. Arts, C. Benac Earle, and J. J. Sánchez Penas. Translating Erlang to
mCRL. In Fourth International Conference on Application of Concurrency
to System Design, Hamilton (Ontario), Canada, June 2004. IEEE computer
society.

[5] T. Arts and L.-Å. Fredlund. Trace analysis of Erlang programs. In Proceed-
ings of the 2002 ACM SIGPLAN workshop on Erlang, pages 16–23. ACM
Press, 2002.

[6] N. Bjørner, U. Lerner, and Z. Manna. Deductive verification of parameterized
fault-tolerant systems: A case study. In Proceedings of the 2nd International
Conference on Temporal Logic. Kluwer, 1997.

[7] S. Blau and J. Rooth. AXD 301 - A new generation ATM switching system.
Ericsson Review, 1:10–17, 1998.

[8] E. Brinksma. A theory for the derivation of tests. Protocol Specification,
Testing and Verification, VIII:63–74, 1988.

[9] J. Brunekreef and S. M. J.-P. Katoen, R. Koymans. Design and analysis of
dynamic leader election protocols in broadcast networks. Distributed Com-
puting, 9(4):157–171, 1996.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 2000.

[11] L.-Å. Fredlund, J. Groote, and H. Korver. Formal verification of a
leader elction protocol in process algebra. Theoretical Computer Science,
177(2):459–486, 1997.

[12] H. Garavel and L. Mounier. Specification and verification of various dis-
tributed leader election algorithms for unidirectional ring networks. Science
of Computer Programming, 29(1-2):171–197, 1996.

[13] K. Havelund and G. R. su. An overview of the runtime verification tool Java
PathExplorer. Formal Methods in System Design, 24(2):189 – 215, March
2004.

46 REFERENCES

[14] J. Romijn. A timed verification of the IEEE 1394 leader election protocol.
Formal Methods in System Design, 19(2):165–194, 2001. special issue of
FMICS 1999.

[15] K. Sen, G. R. su, and G. Agha. Runtime safety analysis of multithreaded pro-
grams. In Proceedings of the 9th European software engineering conference
held jointly with 10th ACM SIGSOFT international symposium on Founda-
tions of software engineering, pages 337–346. ACM Press, 2003.

[16] G. Singh. Leader election in the presence of link failures. In IEEE Trans-
actions on Parallel and Distributed Systems, Vol 7. IEEE computer society,
1996.

[17] S. Stoller. Leader election in distributed systems with crash failures. Tech-
nical Report 481, Computer Science Dept., Indiana University, May 1997.
Revised July 1997.

[18] H. Svensson. Various material related to the paper, including examples.
http://www.cs.chalmers.se/∼hanssv/erlang testing.

[19] J. Tretmans. A Formal Approach to Conformance Testing. PhD thesis,
University of Twente, Enschede, The Netherlands, 1992.

[20] J. Tretmans and A. Belinfante. Automatic testing with formal methods. In
EuroSTAR’99: 7th European Int. Conference on Software Testing, Analysis
& Review, Barcelona, Spain, November 8–12, 1999. EuroStar Conferences,
Galway, Ireland.

[21] U. Wiger. Fault tolerant leader election. http://www.erlang.org/.

Paper 2

A New Leader Election Implementation

This paper was written together with Thomas Arts. The paper was published
at the 4th ’ACM SIGPLAN Erlang Workshop’ in Tallinn, Estonia, September
2005. The paper included here has a few minor corrections and is also typeset in
a different style.

1 – Introduction 49

A New Leader Election Implementation∗

Hans Svensson1, and Thomas Arts2

1 Chalmers University of Technology, Göteborg, Sweden
hanssv@cs.chalmers.se

2 IT University in Göteborg, Box 8718, 402 75 Göteborg, Sweden
thomas.arts@ituniv.se

Abstract

In this article we introduce a new implementation of a leader election algorithm
used in the generic leader behavior known as gen leader.erl. The first open source
release of the generic leader [6] contains a few errors. The new implementation
is based on a different algorithm, which has been adopted to fulfill the existing
requirements. The testing techniques used to identify the errors in the first imple-
mentation have also been used to check the implementation we propose here. We
even extended the amount of testing and used an additional new testing technique
to increase our confidence in the implementation of this very tricky algorithm. The
new implementation passed all tests successfully. In this paper we describe the
algorithm and we discuss the testing techniques used during the implementation.

Categories and Subject Descriptors:D.2 [Software Engineering]

General Terms: Algorithms, Verification

Keywords: Erlang, leader election, distributed systems, implementation

1 Introduction

Many distributed applications are easy to implement if one has one dedicated
process to administer certain tasks. For example, one process could poll all at-
tached hardware devices to determine the configuration of a distributed system,
whereafter the other nodes may then consult this process for the configuration
information. More generally, it is often useful to have a server process that is in
charge of keeping a consistent view of an aspect of the system state. All nodes in
the distributed system consult that server process if they want information about
the system state or if they want to update the system state.

∗ACM COPYRIGHT NOTICE. Copyright c©2005 by the Association for Computing Machinery,

Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax

+1 (212) 869-0481, or permissions@acm.org.

50 A New Leader Election Implementation

A dedicated server provides an easy way to introduce consensus, synchroniza-
tion and resource allocation in a distributed system. The disadvantage with this
solution is, though, that one introduces a single point of failure in the system.
In a fault-tolerant setting, at least one stand-by node needs to be introduced.
Taking that thought one step further, several stand-by nodes may be introduced,
since that provides an even better protection against faults. With either one or
more stand-by nodes, each stand-by node has the problem of detecting when to
become the active node. In fact, the primary node (the one that is assumed to
run the dedicated server if nothing goes wrong) also has the problem to determine
whether it can actually take that role. This is caused by the fact that when this
primary node starts, one of the stand-by nodes may already have decided that
the primary node is dead and that it should run the server instead.

This problem of having several nodes competing to perform one central task is
well-known and described in literature as the leader election problem. A solution
to this problem is an algorithm that when its execution terminates, guarantees
that a single node is designated as a leader and every node knows whether it
is a leader or not. The leader is then assigned the role of the above described
dedicated server.

At least since the early seventies leader election algorithms for all kind of
settings have been described. Often these solutions are stated in form of a multi-
processor machine with shared memory or by means of computers in a token-ring
network. Most solutions assume a perfect world in which no failures occur. Some
solutions assume possible failure of the communication others possible failure of
the nodes. There are over 10, 000 articles on the leader election problem and it
is not easy to find a solution among them that fits the Erlang context well.

In our case, we are interested in a solution that is fault-tolerant with respect
to failing and restarting processes and failing and restarting nodes. We assume
Erlang nodes to have reliable communication without lost messages (basically
the TCP/IP setting in which all nodes can directly communicate with all other
nodes in a reliable way). In the open source Erlang community there exists an
implementation of a leader election algorithm [6]. This implementation is based on
an article written by Singh [4], but contains numerous adaptations to the Erlang
setting. The implementation originates from the work at Ericsson with the AXD
301 telecommunication switch, but has been rewritten and turned into the OTP
behavior gen leader. From a user point of view, the generic leader behaves like a
generic server with callback functions like call and cast. The intended use is that
of having one generic leader per node and clients access only the generic leader
on their node. The generic leaders communicate with each other and forward all
requests to the chosen leader.

Thorough tests have shown that the above mentioned implementation, unfor-
tunately, contains errors (see [1] for details). In some rare circumstances, two
leaders can be elected at the same time. In addition, there is a possibility that
the election of a new leader stands in a deadlock. The system may run for years
without showing any failure, but there is always the potential danger that one
day the circumstances are exactly such that those faults occur.

After failing to repair the implementation we proceeded to make a new im-

2 – Algorithm 51

plementation based on another algorithm. The new implementation is based on
the article ‘Leader Election in Distributed Systems with Crash Failures’ by Stoller
[5]. Compared with Singh, Stoller takes a slightly different approach to the leader
election problem, which seems to fit better into the Erlang setting. However, we
still had to modify the algorithm, since it was designed for a completely different
situation.

We took care to supply the same interface for this new implementation as
defined for the original, incorrect, implementation [6]. However, due to the dif-
ferences in the implemented algorithms the interface functions that return all
alive nodes and the one returning all dead nodes, could not be provided. Apart
from that the behavior of the new implementation should be, when viewed from
the outside, the same as the behavior of the old implementation. Except for the
failures!

We have tested the implementation thoroughly, using both the test method
with abstract traces that revealed the errors in the original implementation [1],
and Erlang QuickCheck [3] which is a property-based random testing tool. While
testing the implementation we discovered and successfully corrected a number of
errors we made in the implementation. The new version of gen leader is available
at http://www.cs.chalmers.se/˜hanssv/leader election.

In Sect. 2 we explain the algorithm we have implemented, and the adaptations
that were made to make the algorithm useful in this context. In Sect. 3 we
describe the implementation and the testing of the implementation. We conclude
with discussion in Sect. 4.

2 Algorithm

Sometime shortly after the first implementation [6] was written Google was used
to search for the source of Singh’s algorithm [4] (on which the implementation
was based). During that search for leader election algorithms another interesting
algorithm on leader election in distributed systems with crash failures by Stoller
[5] popped up. It was judged to be a good, if not better, alternative to Singh’s
algorithm, but that had then already been implemented.

Much later, when an error was detected in the first implementation, and when
we failed to repair this implementation based on Singh’s article, we decided to
try an implementation based on Stoller’s algorithm. Here it is important to
notice that the failure of Singh’s algorithm lies solely in the problem of adapting
the algorithm to the Erlang environment, not in the algorithm itself. As an
example, Singh’s algorithm only deal with one election round, in the gen leader
a new election should be initiated when the elected leader fail. It is often the
case that algorithms described in articles have assumptions and preconditions
that are not fulfilled by the target system, such as communication behavior and
specific network topologies. It is also often the case that the target system requires
additional functionality that is not included in the algorithm, such as interface
functions and error handling. Therefore, changes to the algorithm are necessary.
When dealing with complex algorithms, such changes are dangerous, since one
easily introduces an error, which was exactly what had happened in the gen leader

52 A New Leader Election Implementation

case.
Stoller’s algorithm, is based on a pre-known set of participating processes with

a globally known priority order. The algorithm also depends on the fact that there
exist a mechanism for detecting inactive processes, for this we can use the Erlang
Monitor. The basic algorithm is both simple and elegant. When a process is
started, it first checks whether a process with higher priority is active. If such
a process exists, the process simply waits for one of those processes to become
the leader. If, on the other hand, the present process is the active process with
highest priority, the process itself tries to become the leader. Becoming the leader
is done by making sure that all processes with lower priority either are aware of
its existence or are inactive. When all processes with lower priority are informed,
the process announces itself as the leader. Periodically, the elected leader polls
the inactive processes, if one of the inactive processes is activated, the election
process is simply restarted.

There are actually two different algorithms described in Stoller’s article, one
with synchronous message passing and one with asynchronous message passing.
What is perhaps a bit surprising, and at the same time shows how difficult it is
to select a good candidate algorithm for implementation, is that we choose the
synchronous algorithm, even though Erlang has asynchronous communication. A
more careful reading of the article reveals however, that the difference between
the synchronous and the asynchronous algorithm lies mostly in how the failure
detection works (how node failures are detected and reported). The Erlang mon-
itor works in the same way as the failure detection with synchronous message
passing. This shows that it is important to have a thorough understanding of the
inner workings of the implementation language.

We illustrate in detail how the algorithm works by an example with three
participation processes in Fig. 1. The processes are named A,B and C, with
priority A > B > C, i.e. A has highest priority.

Unfortunately, this algorithm does not behave as is required by a leader elec-
tion in this case. The requirements for the leader election implementation is that
(1) it should quickly elect a leader among the active participating processes, (2)
the elected process stays the leader until it fails and (3) when the leader fails, a
new process should be elected automatically. The algorithm presented by Stoller
fulfills (1) and (3), but fails on (2). Instead whenever an inactive process is
activated, a new round of elections is started, electing the process with highest
priority as the leader. This is both time consuming and inefficient from a message
complexity point of view, so in order to use this algorithm we have to change its
behavior.

2 – Algorithm 53

1. A,B and C are all activated at the same time

- C: starts monitoring A and B,

B: starts monitoring A.

- A: no higher prioritized process alive,

starts monitoring B,

sends a ’halt’-message to B

- B: receives a ’halt’-message,

replies with an ’ack’-message

- A: receive ’ack’ from B,

starts monitoring C,

sends a ’halt’-message to C

- C: receives a ’halt’-message,

replies with an ’ack’-message

- A: receive ’ack’ from C,

all processes notified so A is the leader,

sends ’ldr’-message to B and C

- B,C: receive ’ldr’-message from A,

accepts A as the leader.

2. A and B are active and A is the elected leader,

C is activated.

- A: periodically sends a ’norm’-message to C

- C: receives a ’norm’-message from A,

replies with a ’notnorm’-message

- A: receives a ’notnorm’-message,

restarts the election procedure,

no higher prioritized process alive,

starts monitoring B,

sends a ’halt’-message to B

... (as in situation 1)

3. A and C are inactive, B is active.

- B: starts monitoring A

- B: receives a ’DOWN,A’-message from monitor,

no higher prioritized process alive,

starts monitoring C,

sends ’halt’-message to C

- B: receives a ’DOWN,C’-message from monitor,

all processes notified so B is the leader,

sends ’ldr’-message to A and C

4. B and C are active and B is the elected leader,

A is activated.

- A: no higher prioritized process alive,

starts monitoring B,

sends a ’halt’-message to B

... (as in situation 1)

Figure 1: Examples – Original behavior

54 A New Leader Election Implementation

We made this change in two steps, first we changed the algorithm such that
no new election would be started if a process with lower priority than the leader
was activated. This change is fairly straightforward, and just requires a small
modification to the behavior when a newly activated process is polled by the
elected leader. Instead of restarting the election process, the newly activated
process is informed of who the leader is. If we reconsider the examples in Fig. 1
situations 1, 3 and 4 are not changed, but in situation 2 we avoid a re-election
and instead proceed as in Fig. 2.

2. A and B are active and A is the elected leader,

C is activated.

- A: periodically sends a ’norm’-message to C

- C: receives a ’norm’-message from A,

starts monitoring A,

replies with a ’notnorm’-message

- A: receives a ’notnorm’-message,

sends a ’ldr’-message to C

- C: receives a ’ldr’-message from A,

accepts A as the leader

Figure 2: Examples – Situation 2 without re-election

In addition we wanted to do something similar when a node with higher pri-
ority than the present leader is activated. This however turned out to be much
more complicated. The reason for the complexity is the fact that a node with
high priority is likely to conclude that there are no processes active with a higher
priority and therefore initiates a new election. (Note however that this behavior
is required, otherwise an election would never be initiated in the first place.) The
basic trick here is to make sure that a process that knows who the leader is will
not surrender to the newly activated process, instead it sends a reply saying who
(he thinks) is the leader. In this way, also a newly activated process with high
priority can be informed of who is the leader. The newly activated process finally
confirms the leadership with the leader. Nevertheless, there are still many things
that can go wrong, especially in situations where the present leader fails in the
middle of the information phase. If we yet again reconsider the examples in Fig. 2,
we see that situations 1 and 3 work as before, but as expected we do not get a
re-election in situation 4. This can be seen in Fig. 3

We also made some changes that did not affect the observable functionality,
but which reduced the number of messages sent by the system.

3 Implementation and Testing

We first implemented the algorithm as a gen server behavior, in order to quickly
evaluate if it was working as intended. Having corrected several minor errors,
most of them related to messages that were not treated in all situations, we felt
fairly sure that this algorithm would work inside the gen leader. Replacing the

3 – Implementation and Testing 55

4. B and C are active and B is the elected leader,

A is activated.

- A: no higher prioritized process alive,

starts monitoring B,

sends a ’halt’-message to B

- B: receives a ’halt’-message,

replies with an ’hasLeader,B’-message

- A: receive ’hasLeader,B’ from B,

starts monitoring B,

sends an ’isLeader’-message to B

- B: receive ’isLeader’ from A,

sends ’ldr’-message to A

- A: receive ’ldr’-message from B,

accepts B as the leader.

Figure 3: Examples – Situation 4 without re-election

old algorithm was relatively easy, the only problem was the separation into a
safe loop (where the process execute during elections) and a working loop (where
the process execute when a leader is elected and which basically is the same
as the loop in a generic server). This separation made it possible to do some
simplifications in the message receiving code, and introduced a couple of new
errors.

Another problem is the fact that the new algorithm is fundamentally different
from the old one. This leads to some problems when trying to be compatible with
the existing implementation. In particular we realized that the query-functions
alive (which returns all active participating processes) and down (which returns all
inactive processes) could not be implemented. This is because the new algorithm
does not keep track of this information at all times, so the information returned
by these functions is not reliable. Except from this, we managed to implement
the algorithm without changes to the interface.

Leader election is a well-known and clearly defined problem, which means
that the requirements are also well defined: (1) Eventually, a leader should be
elected, and (2) At most one of the participants is considered the leader. These
properties are also stated in Stoller’s article [5]. We tested the implementation
with two different methodologies, first we used the method with abstracted traces,
as we describe in [1] and second we used Erlang QuickCheck presented in [3].

3.1 Testing with trace recording

The built-in trace functionality in Erlang is a very useful tool when testing an
implementation. However, the raw trace data has a tendency to get very verbose,
containing lots of events and also a lot of data per event. Manual inspection of
traces is therefore often both tedious and time consuming, and alternative ap-
proaches have been proposed. In [2], one approach is presented where abstraction
functions are applied to state based trace data, in order to remove unnecessary
data and reduce the state space. The state space is reduced since different con-

56 A New Leader Election Implementation

crete states will be reduced to the same abstract state when the abstraction
function is applied. While collapsing different concrete states to the same ab-
stract state, cyclic behaviors can be detected. The abstract state space is also
visualized, something that gives a good intuition about the inner workings of an
implementation.

This abstract trace approach is taken even further in [1], where we demonstrate
the effectiveness of the method by testing the first leader election implementation
[6] based on Singh’s algorithm. In [1] we also introduce a small language for
constructing abstraction functions, as well as checking LTL-properties for the
abstract state space. To test the leader election implementation we stimulated
the system by arbitrarily killing and reviving nodes, and by arbitrarily delaying
messages sent between processes.

This test method initially revealed a couple of trivial implementation errors,
but when those were corrected all tests where executed without errors. That is
the new implementation passed all the tests, the same tests during which the
previous implementation failed in two cases. However, this test method does
not change the scheduler in the runtime system, and since the Erlang scheduler
is deterministic, it seemed quite possible that there exist execution paths not
exercised by the trace recording testing technique.

3.2 Testing with QuickCheck

Therefore we decided to also test the implementation with Erlang QuickCheck,
presented by Arts and Hughes in [3]. QuickCheck is a property-based tool for
random testing. Developers write properties in a restricted logic, and then in-
voke QuickCheck to test the property in a large number of cases. QuickCheck
tests concurrent programs by collecting a trace of events, which should have the
properties the developer specifies. The events are defined by instrumenting the
code under test with calls to the QuickCheck function event. QuickCheck delays
these calls randomly, thus in effect overrides the Erlang scheduler and forces a
random schedule on the system under test. This can elicit faulty behavior that
would appear only very rarely with the normal scheduler, which is exactly what
we want to test here. Testing the leader election implementation was done by
randomly killing and reviving leader election processes.

Using QuickCheck to test the second implementation, we could not produce
any trace where the properties were violated. Nevertheless, and much to our
surprise, we could observe some faulty behavior, namely that a leader election
process crashed unexpectedly from time to time. This did not lead to any faulty
behaviour, but it indicated that something was wrong.

Closer analysis revealed a very tricky error, which would have been extremely
unlikely to be found without control of the scheduling. The problematic situation
occurs whenever a process A is about to contact another process B. To do this in a
controlled way, process A first request a monitor on process B before sending the
message. What can occur now is that process B is down when process A requests
the monitor, but alive just some time later when process A send the message. In
this case, process A receive both a failure-notification and a message reply. This

3 – Implementation and Testing 57

K
il
le
d
n
o
d
e
s

in
e
le
c
ti
o
n

a
s
le
a
d
e
r

s
u
r
r
e
n
d
e
r
e
d

QuickCheck 1601 379 102 1120
QC average 19.3 4.6 1.2 13.4
Trace rec. 101 4 11 86

Table 1: Coverage results

situation was overseen in the implementation and lead to a crash. Luckily, the
error could easily be corrected.

In this example we can see how important it is to have control of the schedul-
ing, since this situation occurred frequently (like once every 150 tests) while test-
ing with QuickCheck, but could not at all be observed when we tested the imple-
mentation with the trace recording technique.

3.3 Coverage

When working with test methods, the issue of coverage is central. Coverage
should provide a measure of how exhaustively one has exercised the system, and is
therefore important when evaluating the results of testing. Though it is very rare
that a coverage measure can tell when we have tested enough, rather the coverage
measure will warn of potential situations when we have not tested enough.

In [1] we discuss some coverage measures for the trace recording technique,
but those measures mostly deal with quantities in the abstracted state space and
are hard to compare with the QuickCheck tests. Instead we choose to look at
how many nodes that where killed, and at what stage in the election process the
node were killed.

In Tab. 1 we can see: the coverage result (labeled QuickCheck) for a Quick-
Check run with 5 nodes, average numbers (labeled QC average), and as a compar-
ison results for a run with the trace recording technique (labeled Trace rec). The
first column shows the total number of killed nodes, second column the number
of nodes killed during an election, third column the number of nodes killed when
elected as leader, and fourth column the number of nodes killed when being sur-
rendered to a leader. In the coverage results we can note a difference between
the two techniques, since we do not influence the scheduler in the trace recording
technique it is quite rare that we manage to kill a node in the middle of the
election process (merely 4% of the kills) compared to the QuickCheck approach
where this happens a lot more frequently (almost 25 % of the kills).

Other coverage measures that are often discussed include code coverage and
path coverage. Code coverage is a very basic coverage measure, that only mea-
sures whether (or how many times) a certain line of code has been executed. This
simple measure is useless here, since it is the complicated interaction of several

58 A New Leader Election Implementation

different instances of the implementation that is studied. Path coverage is there-
fore more interesting, since it measure how many different paths that has been
taken through the code. Unfortunately however, path coverage is hard to define
in a functional language such as Erlang since paths does not exist in the same
way as for an imperative language like C or Java.

4 Discussion

Implementing a new leader election algorithm was very interesting from more
than one point of view. Not only is it a challenging intellectual problem, it
also highlights several interesting and problematic situations that may occur in
industry. For the majority of algorithmic problems that arise in practical software
development today, there exist books and papers describing possible solutions.
For a software engineer, it is often a non-trivial task to first find the right source
of information, and then adopt the described solution to the specific setting at
hand. Often software errors are made because (1) the wrong algorithms were
chosen, or (2) the right algorithms were adapted in the wrong way.

Why is it such a hard problem to choose a good algorithm? Algorithm de-
scriptions, and then especially formally verified algorithms, are often presented in
a theoretical way and work only in a specific setting. It is often the case that the
prerequisites stated in the article do not fit into the implementation language. It
is also often the case that changes must be made to the algorithm in order to ful-
fill the specific requirements, such changes include error-handling and interface.
Therefore it is a hard but also crucial problem to select a good algorithm. It is a
task that require not only a thorough understanding of the problem, but also a
good insight in the inner workings of the implementation language.

One example of this is the error found with QuickCheck, our erroneous imple-
mentation closely followed the algorithm in the paper. Nevertheless, the imple-
mentation turned out to be incorrect. Does this mean that the same error is also
present in the article? No, Stoller’s article [5] is not very precise about the seman-
tic assumptions made regarding link requests between processes. Therefore, one
has to assume that there is a difference in how the monitoring works, and that
this is the source of the error. This clearly shows the difficulties of bridging the
semantics from the article, where underlying assumptions often hide important
and problematic issues, to the implementation language.

Verifying fault-tolerant distributed systems is an extremely difficult task. It is
difficult and time consuming to use verification techniques such as model checking,
instead testing is the commonly used method. Here, we have used two different
testing techniques. In many ways these techniques are rather similar; both use
random testing, and both methods use traces. The big difference between the
methods are the way we control the scheduler, which in turn affects the execution
paths explored in the tests. The concrete test results show that both methods
are useful, we found an error with QuickCheck that was not found with the trace
recording technique. On the other hand when writing the implementation it was
very useful to see the visualizations from the trace recording technique, both to
correct errors and to gain insight in the implementation.

5 – Acknowledgments 59

Our work resulted in a new implementation of the generic leader behavior.
This implementation is thoroughly tested and no errors could be identified. For
some very critical applications, one might want to invest in a formal verification of
the presented application, but most applications would not require such thorough
mathematical analysis.

5 Acknowledgments

Thanks to Ulf Wiger, co-author of the first gen leader implementation, and John
Hughes, implementer of Erlang QuickCheck. Also thanks to Koen Claessen for
providing valuable comments and ideas.

References

[1] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of a fault-
tolerant leader election protocol in Erlang. In Lecture Notes in Computer
Science, volume 3395, pages 140 – 154. Springer, Feb 2005.

[2] T. Arts and L.-Å. Fredlund. Trace analysis of Erlang programs. In Proceedings
of the 2002 ACM SIGPLAN workshop on Erlang, pages 16–23. ACM Press,
2002.

[3] T. Arts and J. Hughes. Erlang/QuickCheck. In Ninth International Er-
lang/OTP User Conference, Nov. 2003.

[4] G. Singh. Leader election in the presence of link failures. In IEEE Transactions
on Parallel and Distributed Systems, Vol 7. IEEE computer society, 1996.

[5] S. Stoller. Leader election in distributed systems with crash failures. Technical
Report 481, Computer Science Dept., Indiana University, May 1997. Revised
July 1997.

[6] U. Wiger. Fault tolerant leader election. http://www.erlang.org/.

Paper 3

A More Accurate Semantics
for Distributed Erlang

This paper was written together with Lars-Åke Fredlund for the Sixth ACM
SIGPLAN Erlang Workshop, in Freiburg, Germany, October 2007. The paper
included here has a few minor corrections and is also typeset in a different style.

1 – Introduction 63

A More Accurate Semantics
for Distributed Erlang∗

Hans Svensson1 , and Lars-Åke Fredlund† 2

1 Chalmers University of Technology, Göteborg, Sweden
hanssv@cs.chalmers.se

2 Facultad de Informática, Universidad Politécnica de Madrid, Spain
fred@babel.ls.fi.upm.es

Abstract

In order to formally reason about distributed Erlang systems, it is necessary to
have a formal semantics. In a previous paper we have proposed such a semantics
for distributed Erlang. However, recent work with a model checker for Erlang
revealed that the previous attempt was not good enough. In this paper we present
a more accurate semantics for distributed Erlang. The more accurate semantics
includes several modifications and additions to the semantics for distributed Erlang
proposed by Claessen and Svensson in 2005, which in turn is an extension to
Fredlund’s formal single-node semantics for Erlang. The most distinct addition to
the previous semantics is the possibility to correctly model disconnected nodes.

Categories and Subject Descriptors:D.3.1 [Formal Definitions and Theory]

General Terms: Languages, Theory, Verification

Keywords: Erlang, semantics, distributed systems, verification, model checking

1 Introduction

Software systems written in Erlang are often running in a distributed environ-
ment, and are often highly concurrent and dynamic in nature. Something that
has lately become even more emphasised by the introduction of multi-core and
SMP‡ computers. And although Erlang with its Concurrency Oriented Program-
ming paradigm is particularly suited for writing such applications, experience still

∗ACM COPYRIGHT NOTICE. Copyright c©2007 by the Association for Computing Machinery,

Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax

+1 (212) 869-0481, or permissions@acm.org.
†The author was supported by a Ramón y Cajal grant from the Spanish Ministerio de

Educación y Ciencia, and the DESAFIOS (TIN2006-15660-C02-02) and PROMESAS (S-
0505/TIC/0407) projects.
‡Symmetric Multiprocessing

64 A More Accurate Semantics for Distributed Erlang

shows that concurrent and fault-tolerant software is hard to write, test and verify.
Because of this, several approaches have been proposed for testing [6, 7, 9, 21, 5]
Erlang programs and also a lot of work has been done on formal verification of
Erlang programs [19, 18, 3, 16].

Since the history of Erlang starts in industry, and not in a university, Erlang
is very much defined in terms of its implementation. However, when working
with formal verification a formal semantics is almost indispensable, and doing
verification without a formal semantics is really hard. In 1999 Fredlund proposed
a formal semantics for Erlang [14], and the semantics is described in detail in [15].
Fredlund’s semantics is a small-step operational semantics. It is constructed in
a simple, easy to understand layered fashion. The semantics has been used as
a basis in several different verification projects, such as semi-formal verification
of Erlang code [17] and model checking a resource manager [18]. Fredlund’s
semantics has also been a basis for the development of a theorem prover [18] and
a translation of Erlang into a language that can be model checked [4].

In 2004 two previously unknown errors was discovered in an open source im-
plementation in Erlang of a leader election algorithm [22, 5]. It turned out that
both errors were caused by difficult to foresee chains of events related to the ar-
rival order of messages in the distributed environment. It also turned out that
the errors were specific to a multi-node setting. That is, the errors could only be
found when different parts of the system run on different nodes. Thus, contrary to
the Erlang idea that distribution should be transparent, there is a real behavioral
difference between single-node and multi-node systems.

During the analysis of the errors in the leader election implementation, we
realized that it is impossible to reason about this type of errors in Fredlund’s
semantics. The semantics does not contain the concept of nodes, and all processes
are localized at the same run-time system. This also means that it is impossible
to detect this kind of multi-node errors in a model checker based on Fredlund’s
single-node semantics.

Therefore we proposed an extension of the semantics into a distributed (multi-
node) semantics for Erlang [11]. In that paper we added a distributed layer on
top of the single node semantics, and were able to successfully model multi-node
programs in the extended semantics. In the paper we also warned the community
of potential pit-falls with testing and verification using a single-node semantics.

The semantics for distributed Erlang have since been used in the implemen-
tation of a model checker for Erlang (McErlang, [16]). From the work with the
model checker we could observe that the proposed multi-node semantics was in-
complete. (With incomplete we mean that there are possible behaviors in the
Erlang run-time system, which can not be described by the semantics.) The
incompleteness stems mainly from the Erlang behavior in the case of node dis-
connect. Two Erlang nodes can become disconnected from each other if the
link between them fails, when this happens both involved nodes regard the other
node as dead. This does have some interesting consequences when the nodes later
re-connect. Such behavior can not be modeled in the multi-node semantics we
proposed earlier. Since the publication of the semantics for distributed Erlang we
have also discovered a few minor errors in the semantics as well as some rather

2 – Original semantics 65

embarrassing inelegancies in the presentation of the semantic rules. Therefore we
have re-structured and extended the distributed layer and now propose a more
accurate multi-node semantics.

In order to make this paper self contained and the presentation as easy as
possible to follow, some material from the previous paper by Claessen and Svens-
son ([11]) is presented here as well. This especially concerns Sect. 2 with the
single-node semantics, which naturally has not changed, and Sect. 3 where the
motivation for the multi-node semantics is still at least partly the same.

Contributions The contribution of the paper is a clear and self contained
presentation of a more accurate distributed (multi-node) semantics for Erlang.
In addition to previous attempts to present a semantics for distributed Erlang,
this presentation includes together with some other modifications and additions
novel semantic rules to correctly express node disconnects. We also present and
informally argue for desirable properties of the proposed semantics. The multi-
node semantics has already proved to be useful, when used as the basis for a
model checker for Erlang (McErlang).

Summary Sect. 2 contains an introduction to Fredlund’s single-node se-
mantics. In Sect. 3 we present some motivating examples, as well as a description
of situations where Fredlund’s Erlang semantics lacks expressive power. In Sect. 4
we provide an extension to Fredlund’s semantics, where we add another layer on
top of the existing single-node semantics in order to introduce the full distributed
behavior. In Sect. 5 we specify desirable properties of the multi-node semantics,
and argue why they are fulfilled by the presented semantics. Some of the de-
sign decisions in the extended semantics are further discussed in Sect. 6, related
approaches to the problem are described in Sect. 7 and finally, we conclude in
Sect. 8.

2 Original semantics

In [15], Fredlund gives a complete presentation of a small-step operational seman-
tics for Erlang. Here we will highlight some of the most important aspects, with
enough details to be able to understand the presentation of the extended seman-
tics. Fredlund’s single-node semantics is presented for a subset of Erlang, that
is in short standard Erlang without: modules, nodes, floats, references, binaries,
ports and the catch-expression. Some of the process’ internal state has also been
omitted: there are no process dictionaries, no group leader or processes groups
and name-registration for processes is also not included.

All definitions and rules presented in this section are taken from Fredlund’s
presentation of the semantics [15], with the exception that we in a few cases leave
out details not relevant for this article in order to make the presentation clearer.
Fredlund’s semantics is separated into two parts; one functional part, with eval-
uation of expressions and one concurrent part where processes are spawned and
messages are sent and delivered. Fredlund’s single-node semantics is presented
here in roughly the same order as in the original presentation [15], starting with
expression evaluation rules then defining processes and finally stating process
evaluation rules.

66 A More Accurate Semantics for Distributed Erlang

send0
pid!v

pid!v
−−−−−→v

e
α

−−→
1 e′1

send1
e1!e

α
−−→

2 e′1!e2

e
α

−−→e′send2
v!e

α
−−→v!e′

∀i.¬(qmatches q mi)

∃i.((result v mi e
′) ∧ ∀j.j < i⇒ ¬(matches v mj))

receive

receive m end
read(q,v)

−−−−−−−−−→e′

Figure 1: Expression evaluation rules

Definition 1 Erlang expressions are ranged over by e ∈ erlangExpr; Erlang values
(non-reducible expressions) are ranged over by v ∈ erlangVal.

The semantics is provided in terms of transition rules on the format

t
α1

−−−→
1 t′1 . . . t

αn
−−−→

n t′n ϕ1 . . . ϕm

t
α

−−→t′

where each ϕi is a logic side-condition that does not refer to any transition rela-
tion.

Definition 2 The expression actions, ranged over by α ∈ erlangExprAction, are:

γ ::= τ computation step

| pid ! v output

| exiting(v) exception

| read(q, v) read from queue

| . . .

Definition 3 The expression transition relation →: erlangExpr × erlangExpr-
Action × erlangExpr, written e1

α
−−→ e2 when 〈e1, α, e2〉 ∈ →, is the least relation

satisfying the transition rules in [15].

In Fig. 1 we have listed Fredlund’s rules for evaluation of send and receive at
the expression level. The send-rules are fairly straightforward, both terms are
evaluated until finally a pid!v-action is generated. The receive-rule is more com-
plicated, and won’t be explained in detail. The intuition is that q is a prefix to
the complete message queue, and none of the messages in that prefix matches any
of the patterns in m. Also, there exist a pattern in m, such that it is the first one

2 – Original semantics 67

to match v, and when substituting v according to that pattern its corresponding
expression become e′.

Next we need to formalize the notion of processes, which encapsulate Erlang
expressions, and the notion of Erlang systems, which are collections of processes.
Erlang processes, ranged over by p ∈ erlangProcess, are either live or dead. The
dead processes are introduced to make it easier to reason about the semantics of
linked processes. Processes that are dead still perform some actions; they will
eventually inform linked process about their termination, and they do respond to
received link signals.

Definition 4 An Erlang mailbox is a queue data structure, in theory unbound,
thus it can store any number of messages. Mailboxes are ranged over by q ∈
erlangQueue, and ǫ denotes the empty queue.

Definition 5 A live Erlang process (erlangLiveProcess ⊂ erlangProcess), is a
quintuple: erlangExpr × erlangPid × erlangQueue × P(erlangPid) × erlangBool,
written 〈e, pid, q, pl, b〉 such that

• e is an Erlang expression,

• pid is the process identifier of the process,

• q is a message queue,

• pl is a set of process identifiers (a set of links with other processes),

• b is a boolean determining how process exit notifications are handled.

Definition 6 A terminated (dead) Erlang process (erlangDeadProcess ⊂ erlang-
Process) is a tuple: erlangPid × P (erlangPid × erlangVal), written 〈pid, plm〉,
where

• pid is the process identifier of the process,

• plm is a set of tuples, combining process identifiers with a notification value
that should be sent to the corresponding process.

Definition 7 An Erlang system, ranged over by s, is either a singleton process
or a combination of systems s1 and s2, written as s1 ‖ s2.

Intuitively, the composition of processes into Erlang systems could be thought of
as a set of processes. The ‖ operator is commutative and associative. When there
is no risk for confusion, we omit the linked processes parameter and the boolean
flag from the live processes, that is they are written as 〈e, pid, q〉. The signals are
items of information transmitted between a sending and a receiving process. A
system action, committed by an Erlang system is either a silent action, an input
action or an output action. We should also define the system transition relation.

68 A More Accurate Semantics for Distributed Erlang

e
τ

−−→e′
silent

〈e, pid, q, pl, b〉
τ

−−→〈e′, pid, q, pl, b〉

e
pid′ !v

−−−−−−→e′ pid′ 6= pid
output1

〈e, pid, q, pl, b〉
pid′ !message(v)

−−−−−−−−−−−−−−−−→〈e′, pid, q, pl, b〉

e
pid ! v

−−−−−−→e′output2
〈e, pid, q, pl, b〉 τ

−−→〈e, pid, q · v, pl, b〉

input

〈e, pid, q, pl, b〉
pid ?message(v)

−−−−−−−−−−−−−−−−→〈e, pid, q · v, pl, b〉

link

〈e, pid, q, pl, b〉
pid ? link(pid′)

−−−−−−−−−−−−−−→〈e, pid, q, pl ∪ {pid′}, b〉

term
〈e, pid, q, pl, b〉 τ

−−→〈pid, {〈P, normal〉|P ∈ pl}〉

Figure 2: Process evaluation rules

Definition 8 The signals, ranged over by sig ∈ erlangSignal are:

sig ::= message(v) message

| link(pid) linking with process

| unlink(pid) unlinking process

| . . .

Definition 9 The system actions, ranged over by α ∈ erlangSysAction are:

α ::= τ silent action

| pid ! sig output action

| pid ? sig input action

Definition 10 The system transition relation→: erlangSystem× erlangSysAction
× erlangSystem, written s1

α
−−→ s2, is the least relation satisfying the transition

rules in [15]. Some of those rules are listed here in Fig. 2 and Fig. 3.

The rules in Fig. 2 show how processes perform a computation step, terminates
and sends and receives messages. Note that messages sent to the same process
are delivered immediately (output2). Also note that messages to other processes
are transferred to the above layer by a visible (pid′!message(v)) system action.
The rules in Fig. 3 show how processes communicate and how computations are
interleaved, note that the communication rules also exist in a symmetric version

3 – Motivation 69

s
pid ! sig

−−−−−−−−→
1 s′1 s

pid ? sig
−−−−−−−−−→

2 s′2com
s1 ‖ s

τ
−−→

2 s′1 ‖ s′2

s
τ

−−→
1 s′1 pids(s′1) ∩ pids(s2) = ∅

interleave
s1 ‖ s

τ
−−→

2 s′1 ‖ s2

Figure 3: Process communication rules

where the roles of s1 and s2 are interchanged. The function pids used in the
interleave-rule, simply returns all process identifiers in the Erlang system. This
concludes the introduction to the original semantics, an example with Fredlund’s
single-node semantics in use is presented in Sect. 3.

3 Motivation

The motivation for creating a multi-node semantics for Erlang comes from ob-
servations made during research projects. There were some cases when we did
not understand the behavior of our Erlang programs and other cases when we
were just curious about how the run-time system is implemented. When we had
figured out how things actually worked, we realised that the existing single-node
semantics was not expressive enough to describe the problematic situations. Be-
low we describe two motivating examples, where we have quite ordinary situations
in which the single-node semantics is not expressive enough.

3.1 Message reordering

procA() ->

PidC = spawn(?NODE2,?MODULE,procC,[]),

PidB = spawn(?NODE1,?MODULE,procB,[PidC]),

PidC ! hello,

PidB ! world.

procB(PidC) ->

receive X -> PidC ! X end.

procC() ->

receive X -> ok end.

Figure 4: Erlang program - Message reordering

In our work with a leader election protocol [5], we saw several cases where
problems arise due to unforseen order of events. Especially problematic were

70 A More Accurate Semantics for Distributed Erlang

situations when messages arrived in what was thought to be an impossible order.
To investigate this problem further, we constructed the Erlang program listed
in Fig. 4. This Erlang program (process A) first spawns two processes (C and
B, and passes the process identifier of C to B) and then sends a message, hello,
directly to process C. Next the program sends another message, world, to process
B. When process B receives a message, it is immediately re-sent to process C.
Process C does only one thing, namely receives one message. Intuitively, process
C will receive the message hello, since it is sent directly from A to C. However,
in the fundamental ideas behind Erlang [1] the only thing said about message
order is ’Message passing between a pair of processes is assumed to be ordered’.
This means that without violating this property world should be able to arrive
before hello, since we have no guarantees for the relative message order when
the messages are sent on different routes. This understanding of possible message
orderings is further confirmed in the natural language semantics for Erlang (draft)
by Barklund and Virding [8] (Sect. 10.5.4): ’It is assured (through the rules of
signals, cf. §10.6.2) that if a process P1 dispatches two messages M1 and M2 to
the same process P2, in that order, then message M1 will never arrive after M2

at the message queue of P2. Note that this does not guarantee anything about
in which order messages arrive when a process sends messages to two different
processes. . . ’

The possible executions are depicted in Fig. 5.

CA
1

hello

B
world world

2

3

4?

4?

Figure 5: Message passing

The program in Fig. 4 was executed in three different situations

1. A,B and C where executed in the same run-time system.

2. A,B and C where executed on the same physical machine, but in separate
run-time systems.

3. A,B and C where executed on three different physical machines connected
via a 100 MBit Ethernet network, thus running in separate run-time sys-
tems.

The results were somewhat surprising. If the execution would follow the intuition,
hello should always arrive first; if the Erlang ideas where implemented faithfully
we should see both hello and world arriving first in all three situations. However,
in situation (1) hello always arrive first and in situations (2) and (3) we could see
both hello and world arriving first. The conclusion is that the Erlang run-time

3 – Motivation 71

1. Initial system:

P0 = 〈PidC = spawn(procC, []) . . . , p0, ǫ〉

2. The only scheduler option is to spawn procC. After that, the only option is to
spawn procB since the receive in procC (P2) blocks. This results in three processes:

P0 = 〈PidC ! hello . . . , p0, ǫ〉
P1 = 〈receive X → PidC ! X end, p1, ǫ〉
P2 = 〈receive X → ok end, p2, ǫ〉

3. Only P0 can make progress, since P1 and P2 are blocked on a recieve statement:

P0 = 〈PidB ! world, p0, ǫ〉
P1 = 〈receive X → PidC ! X end, p1, ǫ〉
P2 = 〈receive X → ok end, p2, ǫ · hello〉

4. Here we see that there is no way that procC can receive world before hello. This

is because we have a ’match all’ pattern (the single unbound variable X) in procC and

any later arriving message is put last in the mailbox. Therefore, the next application

of the receive-rule (Fig. 1) must read hello from the mailbox.

Figure 6: Hello World - Single-Node Execution

system implementation behaves differently in a local setting as compared to in
a distributed setting (and also differently from the Erlang specifications, this is
further disscussed in Sect. 6). This partly explain why errors such as those found
in the leader election implementation [5] appear to be common.

Another reason is that Erlang programmers often think of their system in an
event-based way: ”First this process dies, then that process sends a message,
then that message is sent...”. In other words they have a conceptual model of
the many possible orders in which the events can be generated. The semantics
adds additional possibilities in the form of the possible orders in which the events
actually arrive. This extra complexity may be hard to deal with and the speed
with which messages are delivered allows programmers to often only think in
terms of generated events. Thus, if one does not think carefully enough, it is easy
to be misled and overlook something.

Message reordering in Fredlund’s semantics

What happens if we try to analyze the program in Fig. 4 with Fredlund’s single-
node semantics? Since the single-node semantics does not include nodes, it is not
too surprising that the program will behave as in situation (1) above, as we can
see in Fig. 6. The desire to be able to describe also the behavior in situations (2)
and (3) serves as the motivation for extending Fredlund’s single-node semantics
to be able to fully reason about distributed Erlang systems. This is especially
important in case we use the semantics to produce a model, if certain situations
are not present in the model, errors may be overlooked, and thus giving false
confidence.

72 A More Accurate Semantics for Distributed Erlang

3.2 Disconnected nodes

Another interesting and potentially dangerous behavior of the Erlang run-time
system occurs when nodes disconnect from each other. In the simple situation
two nodes (it could be generalized to many nodes) become disconnected because
one of them dies. This of course means that all processes on the failing node
dies, and processes on the surviving node will be notified of this via the link-
mechanism. This situation is not dangerous, and it could be simulated in the
single-node semantics by grouping processes together at a meta level and then
kill off a whole group of processes.

The potentially dangerous situation is when two processes become discon-
nected because the link (in the ordinary case, the network connection) between
them breaks down. In that case both of the nodes continue to execute, and both
nodes consider the other node to have failed(!). Thus the processes are informed
of the failure of processes on the other node via the link-mechanism. Things
then become really interesting when the nodes re-connect, because this happens
without any notice to the running processes. This should be considered harmful
since messages can be dropped silently (if the link mechanism is not used), which
breaks the common assumptions about TCP/IP like communication in Erlang.

From a programmer’s point of view this requires some extra caution, and as
long as this behavior is taken into consideration it should not cause too much
trouble. However if one is careless, and for example has a system with two pro-
cesses running on different nodes (A and B), where A sends a stream of messages
to B and only occasionally gets a reply from B. Then if neither A or B uses the
link mechanism it could be the case that A sends a lot of messages that B never
receives because the nodes are disconnected, and later the nodes are re-connected
before A expects an answer. This behavior obviously can not be described in the
single-node semantics.

It should be noted that this phenomenon is also acknowledged in Barklund and
Virdings natural language semantics for Erlang [8] (Sect. 10.6.2): ’It is guaranteed
that if a process P1 dispatches two signals s1 and s2 to the same process P2, in
that order, then signal s1 will never arrive after s2 at P2. It is ensured that
whenever possible, a signal dispatched to a process should eventually arrive at it.
There are situations when it is not reasonable to require that all signals arrive at
their destination, in particular when a signal is sent to a process on a different
node and communication between the nodes is temporarily lost.’. In this context a
message is a signal. That is, there are no promises regarding safe delivery (except
no reordering), especially during temporary communication failures.

4 Distributed (Multi-Node) Semantics

In this section Fredlund’s single-node semantics is extended, by adding a new layer
of semantic rules, to a distributed (multi-node) semantics. By adding another
layer on top of the existing semantics we can deal with all aspects of distribution
without making more than a few marginal changes to the single-node semantics.
One important implication of this is that everything that is defined in terms

4 – Distributed (Multi-Node) Semantics 73

of the single-node semantics is still valid in the distributed semantics under the
restriction that the system is local, i.e. running on the same node.

The distributed layer of the semantics is presented in three steps; Firstly, we
add the possibility to spawn processes on other nodes. To be able to do this, we
have to extend the concept of Erlang systems to Erlang Run-Time systems, i.e.
a single node, and also Erlang Multi-node systems which are collections of nodes
forming complete distributed systems. We also need to make some minor changes
to the single-node semantics. Secondly, we need new rules for communication
between processes on different nodes (i.e. different run-time systems). These
communication rules should have the properties described in Sect. 3, and thus
enable certain message reordering as well as introduce the possibility to drop
messages in the case of node disconnect. Thirdly, we add the concept of nodes
that die and get restarted. We also need to extend the linking mechanism in order
for it to work also in the distributed semantics.

4.1 Nodes

Before we can define semantic rules for multi-node Erlang systems we have to
introduce node identifiers. The node identifier could be any unique identifier.
For the sake of simplicity, we can assume that they are integers. We also need
two functions that returns node identifiers:

Definition 11 Let the function node(erlangPid) return the node identifier for a
given process identifier and let node(erlangSystem) return the node identifier for
an Erlang system.

4.2 Node message queues

The message ordering induced by a single-node semantics is too deterministic;
certain message reorderings are not considered. We achieve the distributed or-
dering by introducing one message queue per node, holding all messages currently
’in transit’ to that node.

Definition 12 An Erlang node message queue, ranged over by nq ∈ erlangNode-
Queue, consists of a finite sequence of triplets vx = (fromx, tox, sigx): v1 ·v2 ·. . .·vn,
where ǫ is the empty sequence, (·) is concatenation and (\) is deletion of the first
matching triplet, e.g.

nq = (a2, b1, c1) · (a1, b2, c1) · (a1, b2, c2) · (a1, b2, c1) \ (a1, b2, c1)

= (a2, b1, c1) · (a1, b2, c2) · (a1, b2, c1)

4.3 Run-Time systems

Next, we define the concepts of live and dead run-time systems.

Definition 13 A live Erlang Run-Time system (ERTS), ranged over by r ∈
erlangRuntimeSystem is a triplet: erlangSystem × erlangNodeName × erlangNode-
Queue, written [s, node, nq], where:

74 A More Accurate Semantics for Distributed Erlang

• s is the Erlang system at node node.

• node is the node identifier (name).

• nq is a node message queue.

Definition 14 A dead Erlang Run-Time system is a tuple: erlangNodeName ×
P(erlangPid), written [[node, npl]], where:

• node is the node identifier.

• npl is a set of process identifiers (consisting of all processes on the node
node).

An example of a dead ERTS is: [[n1, {p1, p5, p13}]] where the node identifier is
n1, and the processes that has executed on n1 are p1, p5 and p13. Note also that
node(p5) = n1.

Definition 15 An Erlang Multi-node system (EMNS) is either a single ERTS or
a composition of Erlang Multi-node systems n1 and n2, written as n1 ‖ n2.

Note that here we have chosen to use the same notation (‖) for composition of
ErlangMulti-node systems as for the composition of Erlang systems in the original
semantics. This is to illustrate that they are similar in behavior. Moreover, there
is little risk for confusion.

4.4 Changes to the single-node semantics

s
pid!fromsig
−−−−−−−−→

1 s′1 s
pid?sig
−−−−−−→

2 s′2 node(pid) = node(from)
com

s1 ‖ s
τ

−−→
2 s′1 ‖ s′2

Figure 7: New com-rule

e
spawn(n,f,[v1,...,vm]) {result,pid′}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→e′ pid 6= pid′ node(pid) = n

spawnlocal

〈e, pid, q, pl, b〉 τ
−−→〈e′, pid, q, pl, b〉 ‖ 〈f(v1, . . . , vm), pid′, ǫ, ∅, false〉

e
spawn(n,f,[v1,...,vm]) {result,pid′}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→e′

pid 6= pid′

node(pid) 6= n

node(pid′) = n
spawndist

[〈e, pid, q, pl, b〉 ‖ s1, node(pid), nq1] ‖ [s2, n, nq2]
τ
−−−→

[〈e′, pid, q, pl, b〉 ‖ s1, node(pid), nq1] ‖ [〈f(v1, . . . , vm), pid′, ǫ, ∅, false〉 ‖ s2, n, nq2]

Figure 8: New spawn-rules (Symmetric spawn link-rules omitted)

4 – Distributed (Multi-Node) Semantics 75

Everything defined in the original semantics works in the extended semantics,
with a few exceptions. We have to change the com-rule (Fig. 3) slightly, so that it
only applies in the situation where both processes are running on the same node.
Further, we need to do a small (non-functional) modification in order to export
extra information about the sender of a message to the layer we are adding. This
is done by replacing the sending operator (!) with a tagged version (!from), where
from is the sender of the message. This change is straightforward and is applied
to all the send operators in the single-node semantics. An example of the tagged
send operator can be seen in the new com-rule presented in Fig. 7. The new
com-rule has an added side condition, which restricts its application to the case
when the sender and the receiver are running in the same Erlang system. Finally,
to be able to spawn new processes in the multi-node setting, we need to refine the
existing spawn-rule (we add a side condition, assuring that it is a local spawn)
and add a distributed spawn-rule. (And similar changes for spawn link.) The
new (spawndist) and modified (spawnlocal) spawn-rules are presented in Fig. 8.
We should note that the distributed spawn rule is atomic, that is, the new process
is created (but does not necessarily start executing) immediately at the remote
node.

In addition to these changes, we also introduce a new way of writing an erlang-
DeadProcess (previously written 〈pid, plm〉), namely: 〈|pid, plm 〉|.

4.5 Transitions

Multi-node systems transitions are labeled by actions. The actions that can occur
at the level of nodes are defined below.

Definition 16 The Multi-node system actions, ranged over by γ ∈ erlangMulti-
NodeSysAction are:

γ ::= τ silent action

| pid!fromsig output action

| pid?fromsig input action

| die(node) node failure

| disconnect(node1, node2) node disconnection

That is, the actions visible in erlangMultiNodeSysAction are only the node-to-
node communication and node failure. Messages sent between processes executing
on the same node are not visible at this level. Note also that at this level the
input actions (?) are tagged with a from. This is not strictly necessary from a
functionality point of view, but (as we see in Def. 22) fairness can be expressed
in a simple and elegant way with tagged input actions.

Definition 17 The transistion relation for Erlang Multi-node systems, →:
erlangMultiNodeSystem × erlangMultiNodeSysAction × erlangMultiNodeSystem,

written n
γ

−−−→
1 n2, is the least relation satisfying the rules in Fig. 9 – Fig. 14.

76 A More Accurate Semantics for Distributed Erlang

s
pid !

from
sig

−−−−−−−−−−→
1 s′1 node(from) 6= node(pid)

output
node

[s1, node(from), nq1] ‖ [s2, node(pid), nq2]
pid !

from
sig

−−−−−−−−−−→

[s′1, node(from), nq1] ‖ [s2, node(pid), nq2 · (from,pid,sig)]

s
pid !

from
link(from)

−−−−−−−−−−−−−−−−−→
1 s′1 (pid,from,exited(pid,noconn)) /∈ nq

output2
node

[s1, node(from), nq] ‖ [[node(pid),npl]]
from !pidexited(pid,noconn)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[s′1, node(from), nq · (pid,from,exited(pid,noconn))] ‖ [[node(pid),npl]]

s
pid !fromsig
−−−−−−−−−−→

1 s′1

sig 6= link(from) ∨

(pid,from,exited(pid,noconn)) ∈ nq1
output3node

[s1, node(from), nq1] ‖ [[node(pid),npl]] τ
−−−→

[s′1, node(from), nq1] ‖ [[node(pid),npl]]

Figure 9: Inter-node communication – Output rules

4.6 Operational output rules

In Fig. 9 the first rule, output
node

is the normal output rule. In this rule a message
is sent to a process executing in a live ERTS, the message is appended to the
node message queue nq. The message is later delivered to the receiving process
by an input rule. The output2

node
-rule generates an appropriate reply to a link-

request made to a process on a dead node. A reply is only generated if there is
not already a reply in the node queue of the sender (i.e. a message waiting for
delivery in nq) for that particular process identifier. The reason to look inside
nq for an exit-message is that as long as the error-message has not reached the
linking process, it can not act upon the error. Therefore it can not know that it
should establish a new link, and thus no new error-message should be constructed.
The last output rule output3

node
take care of all other messages to a processes on

a dead node, and simply discards them.

4.7 Operational input rules

In Fig. 10 there are two input-rules. The input rule input
node

uses the function nq-
Match to retreive a message from the node message queue in a non-deterministic
fashion. The selected message (sig) is then delivered to the actual receiving pro-
cess. The nqMatch function is defined below. In Fig. 10 there is also the silentnode-
rule, applied for everything except communication happening at system/process
level. As with the output rules, note that messages sent between processes exe-
cuting on the same node does not end up in the node message queue. They are
handled by the modified com-rule (Fig. 7).

4 – Distributed (Multi-Node) Semantics 77

s
pid ?sig
−−−−−−−→s′ nqMatch(nq,from,pid) = sig

input
node

[s, node, nq]
pid ?

from
sig

−−−−−−−−−−→[s′, node, nq \ (from,pid,sig)]

s
τ

−−→ s′silentnode
[s, node, nq]

τ
−−→[s′, node, nq]

Figure 10: Inter-node communication – Input-rules

Definition 18 nqMatch(erlangNodeQueue,erlangPid,erlangPid), is a function that
given an Erlang node message queue, a sender process id (from) and a receiver
process id (to) returns the first message in the queue sent by from to to, e.g.

nq = (a2, b1, c1) · (a1, b2, c1) · (a1, b2, c2) · (a1, b2, c1)

⇒ nqMatch(nq, a1, b2) = c1

In Fig. 10 we should note that the rule input
node

can be applied in an arbitrary
order for pairs of a sender and a receiver. This means that messages can (possibly)
be reordered. However, at the same time this rule introduces another problem,
namely that a certain (sender,receiver)-pair is never considered. That means that
the delivery of some messages could potentially be delayed forever. The problem
is that many properties can not be proved for such a non-fair situation, to deal
with this problem we have to state a fairness rule (in Sect. 4.9).

4.8 Operational node rules

links = {(pid, pid′) | pid′ ∈ getProcLinks(pid), pid ∈ pids(s)} ∪ links(nq)

linkMsgs = {(from, to, exited(from,noconnection) | (from,to) ∈ links}

n′ = deliverMsgsToNq(n,linkMsgs)
node-failure

n ‖ [s, node, nq]
die(node)

−−−−−−−−−−→ n′ ‖ [[node, pids(s)]]

Figure 11: Node-failure rule

There are four operational node rules, node-failure, node-(re)start, node-dis-
connect and node-interleave. The node-failure rule is presented in Fig. 11. It looks
quite complicated, but most of the complexity is due to bookkeeping. When a
node fail, and because we do not have any external handling of links, we have
to collect all links that are currently defined and produce proper exit-messages.
To simplify the collection of links, we use two functions links and getProcLinks
(defined below) to collect the links and a third function deliverMsgsToNq (also
defined below) to deliver the exit-messages. The node-failure rule also create a
dead ERTS with the same node name as the failing node. The dead node also
contains a list of all processes previously running on the node. One thing to

78 A More Accurate Semantics for Distributed Erlang

node-start
[[node, npl]]

τ
−−→[init() ‖ {〈|pid, {} 〉| | pid ∈ npl}, node, ǫ]

Figure 12: Start node rule

msg1←2 = {(from, to, sig) | sig ∈ nqMatchAll(nq, to, from),

to ∈ pids(s1), from ∈ pids(s2)}

msg2←1 = {(from, to, sig) | sig ∈ nqMatchAll(nq, to, from),

to ∈ pids(s2), from ∈ pids(s1)}

links1 = filterLinks({(pid1, pid2) | pid2 ∈ getProcLinks(pid1), pid1 ∈ pids(s1)}

∪ links(nq1), n1, n2)

links2 = filterLinks({(pid1, pid2) | pid2 ∈ getProcLinks(pid1), pid1 ∈ pids(s2)}

∪ links(nq2), n2, n1)

fail1 = {(from,to,exited(from,noconn)) | (from, to) ∈ links1}

fail2 = {(from,to,exited(from,noconn)) | (to, from) ∈ links2}
node-disc

[s1, n1, nq1] ‖ [s2, n2, nq2]
disconnect(n1,n2)
−−−−−−−−−−−−−−−−−→

[s1, n1, (nq1 \msg1←2) · fail2] ‖ [s2, n2, (nq2 \msg2←1) · fail1]

Figure 13: Node-disconnect rule

note here is that there can be at most one link between a pair of processes, and
therefore we can safely add all link messages directly to the node queues without
worrying about message order. Another thing that we should observe is that links
are collected both from the individual processes and the node message queue nq.
The intuition behind this is that as soon as a process on another node has sent a
link request, the sending process believes that it has a working link to the linked
process. The linking mechanism is further discussed in Sect. 6.

Definition 19 The function links(erlangNodeQueue) traverses an Erlang node
message queue and collects all pending link-request from the node queue. The
function getProcLinks(erlangPid) return the pl -list (i.e. the list of linked nodes)
for a process, given the process identifier of that process. Finally, the function
deliverMsgsToNq(EMNS,Messages) deliver all messages to the correct node queue.
E.g. let n = [s11, n1, nq1] ‖ [s21, n2, nq2] and p1, p3 ∈ pids(s11) and p7 ∈ pids(s21),
then: deliverMsgsToNq(n, {(p7, p1, sig1), (p3, p7, sig2)}) =

[s11, n1, nq1 · (p7, p1, sig1)] ‖ [s21, n2, nq2 · (p3, p7, sig2)]

In Fig. 12 the node-(re)start rule is presented. The interesting thing to notice
here is that we create an erlangDeadProcess for each pid that has previously been
running on the node (i.e. the process identifiers in npl). The reason for this is to
simplify link handling. If all previous processes exists on the node, future link-
requests sent to these processes get the correct respose without having to create
any further semantic rules. The function init() is an initialization process which
is started on a new node. What the init()-process does is not further specified in

4 – Distributed (Multi-Node) Semantics 79

n
γ

−−→
1 n′

1
interleavenode

n1 ‖ n
γ

−−→
2 n′

1 ‖ n2

Figure 14: Node interleaving (symmetrical rule omitted)

the semantics, but it could be thought of as any reasonable, and changeable from
the outside, starting action for an Erlang node. For example starting a certain
set of processes, or initiate some other chain of events.

The third node rule, node-disconnect, is presented in Fig. 13. The rule handles
the situation when the communication channel between two nodes break down.
The result of this is that all messages from/to the disconnected nodes that are cur-
rently in the node queue are lost, and that a set of link messages (exit-messages)
are created and sent. The rule uses two functions nqMatchAll and filterLinks (de-
fined below) to collect messages that are lost and links that should be converted
to a exit-messages. The rule discards messages and adds link notifications to the
node queues of the disconnected nodes. Some things should be noted, first, the
order of messages between a pair of processes is not affected by this rule. Either
the messages are delivered in order or not at all. Second, to drop all messages
in transit between the disconnected nodes is a design choice, we could just as
well drop only an arbitrary set of messages. This is further discussed in Sect. 6.
Finally we note that there is no node-(re)connect-rule, since the reconnection of
nodes is transparent at the semantic level.

Definition 20 The function nqMatchAll(erlangNodeQueue, To, From) is a func-
tion that given an Erlang node message queue, a sender process id (from) and
a receiver process id (to) returns all messages in the queue sent by from to to.
The function filterLinks(P(erlangPid × erlangPid), erlangNodeName, erlangNode-
Name) is a function that filters a set of process identifier pairs with respect to
the node the processes are running at. E.g. let node(p1x) = n1, node(p2x) = n2

and node(p3x) = n3 then: filterLinks({(p11, p21), (p12, p34), (p27, p12)}, n1, n2) =
{(p11, p21)}

We should also take a closer look at what happens with the node-to-node com-
munication when the receiving process terminates. When a process terminates,
its message queue q disappears. That is all messages which have already been
delivered to the process are deleted. If the rule input

node
is applied for a termi-

nated process, i.e. if we deliver a message to a terminated process, this is handled
by the rules in Table 3.17 in Fredlunds semantics [15]. That is, the underlying
semantics properly destroy messages and reply to link-requests.

4.9 Fairness

As we noted above, the input-rule, i.e. the input
node

rule in Fig. 10, can be ap-
plied in such a way that some messages are never delivered. That is the rules
themselves does not ensure that messages are delivered in a fair manner. This

80 A More Accurate Semantics for Distributed Erlang

is generally a bad thing, since many properties can not be proved in a non-fair
system. Therefore we need to define a fairness-rule which will exclude certain
unwanted behavior of the system. Fairness is defined in terms of permissable
execution sequences.

Definition 21 An execution sequence is a sequence of ErlangMulti-node Systems
ni, together with corresponding Erlang Multi-node system actions γi written:

n
γ0

−−−→
0 n

γ1

−−−→
1 n

γ2

−−−→
2

Definition 22 [Fairness for inter-node communication]
It should hold for all execution sequences, (~n,~γ):

∀i.

{

n
pid!fromsig
−−−−−−−−→

i ni+1 ⇒

∃j > i.

(

n
pid?fromsig
−−−−−−−−→

j nj+1 ∨

n
die(node(pid))

−−−−−−−−−−−→
j nj+1 ∨

n
disconnect(node(pid),node(from))
−−−−−−−−−−−−−−−−−−−−−−−−−−→

j nj+1 ∨

n
disconnect(node(from),node(pid))
−−−−−−−−−−−−−−−−−−−−−−−−−−→

j nj+1

)}

That is, Definition 22 state that every sent message is eventually delivered to the
recieving process, or the node where the receiving process is executed dies, or a
node disconnection involving the sending and the receiving node occurs.

4.10 Message reordering

The motivation for extending Fredlund’s single-node semantics was partly to cap-
ture the distributed behavior where messages were reordered. Therefore, we re-
peat the ’hello world’ example from Sect. 3, but now we execute the program
from Fig. 4 in the extended semantics. The example is presented in Fig. 15.

4.11 Node disconnection

Another part of the motivation for the multi-node semantics was to capture the
behavior where nodes disconnect. Therefore, we conclude the presentation of the
extended semantics with an example with node disconnection. The example is
presented in Fig. 17, where we execute the program in Fig. 16 in the multi-node
semantics. The program consists of two processes where the first process sends a
the number sequence [1, 2, 3] to the other. The effect of the node disconnect is
that the second process can receive the sequence [1, 3].

5 – Properties of the Multi-Node Semantics 81

1. Initial system:

N0 = [〈PidC = spawn(nodeC,procC, []) . . . , p0, ǫ〉, n0, ǫ]

2. The only scheduler option is to spawn procC. After that, the only option is to
spawn procB since the receive in procC blocks. This results in three processes:

N0 = [〈PidC ! hello . . . , p01, ǫ〉, n0, ǫ]
N1 = [〈receive X → PidC ! X end, p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉, n2, ǫ]

3. Only N0 can make progress, since N1 and N2 are blocked on a recieve statement:

N0 = [〈PidB ! world, p01, ǫ〉, n0, ǫ]
N1 = [〈receive X → PidC ! X end, p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉, n2, ǫ · (p01, p21, hello)]

4. Now we have two options, either apply the input
node

on N2 or let N0 send its second
message. Since the purpose is to show message re-ordering we let N0 proceed:

N0 = [〈|p01, ǫ 〉|, n0, ǫ]
N1 = [〈receive X → PidC ! X end, p11, ǫ〉,

n1, ǫ · (p01, p11, world)]
N2 = [〈receive X → ok end, p21, ǫ〉,

n2, ǫ · (p01, p21, hello)]

5. Again we have two options, we can apply input
node

to either N1 or N2, to illustrate
our point, we choose N1:

N1 = [〈receive X → PidC ! X end, p11, ǫ · world〉, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉, n2, ǫ · (p01, p21, hello)]

6. Now we continue to ignore N2 and let p11 read its message and send it to p21:

N1 = [〈|p11, ǫ 〉|, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉,

n2, ǫ · (p01, p21, hello) · (p11, p21, world)]

7. Finally we have arrived in the wanted situation, we can apply inputnode to N2, and
by its construction it is perfectly ok to deliver the world message:

N2 = [〈receive X → ok end, p21, ǫ · world〉,
n2, ǫ · (p01, p21, hello)]

8. Now world is received before hello.

Figure 15: Hello World – Multi-Node Execution

5 Properties of the Multi-Node Semantics

In the previous section we have defined a distributed semantics for a subset of
Erlang. The limitations are the same as Fredlund have in the single node seman-
tics [15]; in short standard Erlang without: modules, floats, references, binaries,
ports, the catch-expression and some internal process state information such as
process dictionaries. In the design of the semantics we have had several informal
properties which we have intended for the distributed semantics. In this section
we argue for some of them and describe why they are desirable and why they
actually hold for the distributed semantics.

82 A More Accurate Semantics for Distributed Erlang

init() ->

PidB = spawn(?NODE2,?MODULE,procB,[]),

PidA = spawn(?NODE1,?MODULE,procA,[PidB]).

procA(PidB) ->

PidB ! 1,

PidB ! 2,

PidB ! 3.

procB() ->

receive X -> ok end,

receive Y -> ok end,

receive Z -> ok end.

Figure 16: Simple One-Two-Three counting program

5.1 Extension

The first property we want is that the distributed semantics is a true extension of
the single-node semantics. That is if we take a single-node system and execute it
in the multi-node semantics (this is possible with only minor modifications of the
system) it should work exactly the same. In order to express ’exactly the same’
and ’minor modifications’ in a strict way we have to define the mkDist function
as well as an execution sequence.

Definition 23 The function mkDist(erlangNodeId,erlangSystem) takes a single-
node Erlang system and prepare it for execution in the multi-node semantics (on
the given node). The necessary change is to replace each spawn(f, [v1, . . . , vm])
with the distributed variant spawn(n, f, [v1, . . . , vm]), where n is the given node.

Definition 24 An execution sequence for an Erlang is defined to be the sequence
of system actions (see Def. 9) performed by the executed system. Since the
scheduler is non-deterministic an Erlang system will have a (large) set of possible
execution sequences.

Prop 1. A single-node Erlang system (s ∈ erlangSystem) which is prepared for
execution in the multi-node semantics by the mkDist function has exactly the
same set of possible execution sequences as the system s executed in the single-
node semantics, as long as the node is not allowed to fail.

This is true because the only semantic rules that are invoked are those in the
single node semantics (together with the non-interfering silentnode rule). This
we can be sure of because there is only one way to ’escape to’ the multi-node
semantics, namely by communication not caught by the com-rule (Fig. 7). And
because we have the side condition in the spawnlocal-rule that the node is the same
for the spawned processes, all communication is caught by the com-rule. Note
that we have to disallow the node failure, or the distributed version of the system

5 – Properties of the Multi-Node Semantics 83

1. Initial system:

N0 = [〈PidB = spawn(n2,procB, []) . . . , p0, ǫ〉, n0, ǫ]

2. The only scheduler option is to spawn procB. After that, the only option is to
spawn procA since the receive in procB blocks. This results in two processes (the
first one is terminated):

N1 = [〈PidA ! 1 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ〉, n2, ǫ]

3. Again there is only one option, to let PidA send 1:

N1 = [〈PidA ! 2 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ〉, n2, ǫ · (p11, p21, 1)]

4. To illustrate our point, we now let N2 execute, the inputnode- rule is applied:

N1 = [〈PidA ! 2 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ]

5. Now we proceed by letting N1 execute and send another number:

N1 = [〈PidA ! 3 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ · (p11, p21, 2)]

6. Now assume that the nodes disconnect, and thus we apply the node-disconnect
rule, note that the message already delivered to p21 is not affected:

N1 = [〈PidA ! 3 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ]

7. Now the nodes are re-connected, and we can proceed by letting N1 execute and
send yet another number:

N1 = [〈|p11, ǫ 〉|, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ · (p11, p21, 3)]

8. Now we see that p21 will receive the sequence [1,3], which is not possible in the

single-node semantics.

Figure 17: One-Two-Three – Multi-Node Execution

would have a larger set of possible execution sequences. Node disconnect is not
a problem since we have only one node!

5.2 Message Reordering and Node Disconnect

The main motivation for the semantics for distributed Erlang was to be able to
express message reordering and node disconnect in the semantics, it is therefore
desirable that this is indeed possible.

Prop 2. In a distributed system, a message sent from a process (A) via a second
process (B) to a third process (C), can arrive before a message sent directly from
A to C at some earlier point in time. Messages between two processes at different
nodes can also be lost due to node disconnection.

In the examples in Fig. 15 and Fig. 17 we demonstrate that messages can arrive

84 A More Accurate Semantics for Distributed Erlang

in the desired way and that node disconnection is indeed possible. By the design
of the function nqMatch the opposite, namely that messages between a pair of
processes are always ordered, is also ensured.

5.3 Expressiveness

It is also important that the extended semantics is complete in terms of ex-
pressiveness. Every correct distributed system must be able to execute in the
semantics, and it must not get stuck because there is something not expressible
in the semantics.

Definition 25 Progress for a process is equivalent to applying one of the evalua-
tion rules for processes. Further an Erlang system can make progress if and only
if any of its processes can make progress.

Prop 3. An Erlang (Multi-node) system which is not in a dead-locked situation
and that does have at least one live process should be able to make progress ac-
cording to the semantic rules.

This is a property that should hold for the underlying semantics, even though
it is not proved by Fredlund in [15]. We would like to prove something similar
for ERTS/EMNS, but here we have the extra complications of nodes. Because
of the rules node-failure,node-start and node-disconnect an EMNS can always do
something namely that a node fail or restart or that two nodes disconnect.

5.4 Finite systems stays finite

Another concern is that the extension of the semantics may introduce unwanted
overhead in terms of resources. Since the semantics should model the behavior
of the run-time system it is important that a system that executes with finite
bounds on the message queues does so also in the semantics.

Prop 4. A finite system (that is with finite bounds of the length of the mes-
sage queues) in the single-node semantics is still finite in the multi-node semantics.

The main argument for why this holds is that there is a one-to-one mapping of
messages. That is there is no place in the multi-node semantics where a message
is duplicated, therefore the number of messages stays the same. Since we also
have the fairness rule all messages should eventually be delivered, and there is no
inherent way that systems become infinite in the distributed semantics.

5.5 A word of caution

After we have argued above that the desired properties of the distributed se-
mantics holds it is important to note a few artifacts of the functional differences
between a single-node and a multi-node system. Because of the functional dif-
ferences, a non-deadlocking single-node system might very well dead-lock if run

6 – Discussion 85

in a distributed setting. For example imagine a system which depends on the
message ordering implied by the single-node semantics§, such a system could eas-
ily dead-lock if we distribute it over several run-time systems. In the same way,
also a finite single-node system might very well become infinite if it is run in a
distributed environment.

6 Discussion

The fundamental characteristics of Erlang are described by Armstrong in his the-
sis [1]. Armstrong describes how the concept of concurrency oriented program-
ming led to the development of Erlang. The original thoughts on distribution
are further described by Wikström [23]. In a concurrency oriented programming
language the following is specified for message passing: ”Message passing between
a pair of processes is assumed to be ordered.”

This is indeed true for the semantics presented by Fredlund [15], but due
to the construction of the com-rule (in Fig. 3), even stronger properties hold in
the single-node semantics. In Fredlund’s single-node semantics the delivery of
a message to another process is instantaneous, meaning that all messages are
delivered in exactly the order they are sent. Because of how the standard (OTP)
Erlang run-time system is implemented, this happens to be true also for a real
Erlang system where all processes are running on the same node. However, it
is not true in general for a concurrency oriented programming language, and
specifically not in a distributed setting with several different Erlang nodes.

There is an intricate choice here, on one side we have the de facto standard,
the OTP implementation of the Erlang run-time system where local communi-
cation is instantaneous. On the other side we have the different Erlang specifi-
cations, where no support for such instantaneous communication can be found.
Our original concern was to produce a semantics to be used for model checking,
and therefore the presentation is biased by this. Since Fredlund’s single-node se-
mantics faithfully describes what actually happens inside the standard run-time
system, we argue that for efficient model checking of Erlang systems (to be run
on in the standard run-time system), the underlying semantics should be kept
as it is. Fredlund’s intra-node message passing is not consistent with the Erlang
specifications, but using a special version of local message passing makes certain
(local) systems easier to reason about.

Nevertheless, it is somewhat unconventional to produce a semantics for a par-
ticular implementation of a language, and thus one could argue that we should
instead present the more general semantics. The alternative then is to only have
the kind of message passing rules that we have in the node-to-node communica-
tion. Such a modification would be rather straightforward to do. The consequence
of this is an overall simpler (and more general) semantics, which is less restrictive
for a local system. However, this is problematic in the model checking context,

§One could indeed say that such a system is simply containing a bug, since the enforcment
of such a static message order is nowhere to be found in the Erlang specifications. Nevertheless,
since the de facto standard, the OTP Erlang run-time system implementation, actually behave
this way such programs are going to be written.

86 A More Accurate Semantics for Distributed Erlang

since it results in a bigger state space. Another problem is the introduction of false
negatives, because a local system might appear to fail due to an order of events
not possible in reality (in the standard Erlang implementation). Such a general
semantics would however be useful in case of a future Erlang implementation that
adheres more closely to the Erlang specifications. (Such an implementation would
of course also require changes to model checkers using the semantics presented in
this paper.)

This picture may also be further complicated in the future by the introduction
of multi-core systems and the SMP-version of the Erlang run-time system.

In the development of the multi-node semantics, we have also made several
other distinctive choices. One particular choice is seen in the node-disconnect rule,
where all messages currently in transit between two nodes are dropped. We could
just as well have dropped an arbitrary sequence of messages in the node queue.
However, dropping all messages is certainly easier and it makes the fairness rule
less complicated. This is also an example of where a simpler rule offer the same
expressivity as a more complicated one. Every sequence of messages in the node
queue could indeed be dropped, it is just a matter of applying the rule at the
right time. Another design choice we made was to introduce one message queue
for ’messages in transit’ per node. There is no functional motivation behind this
choice, we could just as well have settled for one single global message queue, but
in the end we thought it to be more aesthetic to have one queue per node.

Quite many of the rules presented in Section 4 handle the link-messages. The
link mechanism is a very useful construction and many distributed implementa-
tions rely on this functionality. It is important to observe that we must treat
links differently from ordinary messages in order to faithfully describe Erlang
programs. For example, take a look at the Erlang program in Fig. 18. If we
run procA it should be possible to sometimes trap the exit message (i.e. get an
{’EXIT’,pid,kill} from procB and sometimes just get a {’EXIT’,pid,noproc}
back, indicating that process B had already terminated. This behavior can be
observed by running the program repeatedly. Although the result is heavily de-
pendent on machine load and network load, with 1000 runs, almost everytime both
behaviors could be observed. This means that it would be incorrect to treat the
link-message as ordinary message, since the message order between a pair of pro-
cesses is respected and then an order of events such as getting {’EXIT’,pid,kill}
from process B would be impossible.

In Fredlund’s single-node semantics, (and here seen in Fig. 2) a separation
is made between link-messages and other messages, which ensures the correct
behavior. However, when dead nodes are involved, some special care is needed,
which results in special link-rules as seen in Fig. 9.

Another part of the linking mechanism are the somewhat complicated node-
failure and node-disconnect rules (Fig. 11 and Fig. 13), where we have to collect
link messages from the node message queue. This is because we are modelling
the link mechanism in a different way from the actual Erlang implementation.
This actually an important observation in a more general perspective. The goal
with the semantics is to be able to express all the possible behavior of the Erlang
implementation, and not to describe how the implementation actually works. In

7 – Related Work 87

procA() ->

PidB = spawn(?ANOTHERNODE,?MODULE,procB,[]),

PidB ! a,

process_flag(trap_exit,true),

link(PidB),

...

procB() ->

receive a ->

exit(kill)

end.

Figure 18: Erlang program - Linking

the Erlang implementation, the run-time system keeps track of links via a timeout
construction. In the semantics we instead do the book keeping (so to say) at the
other end. Therefore, we have to take extra care when node fails since messages
in nq are otherwise lost.

The node-disconnect rule looks rather horrible from a programmers point of
view, at any time, all messages between a pair of nodes may be lost. However
this is not as disastrous as one might think, as long as one is aware that this
might happen. This is because the link-mechanism works in the node disconnect
case, and as long as communication is restricted to monitored receivers there is
no immediate danger.

Finally we should discuss one limitation of the distributed semantics, namely
that monitors are not a part of the semantics. This is a limitation because
monitors are widely used, and the correctness of many distributed Erlang systems
rely on monitors. One is tempted to belive that it is possible to implement
monitors in terms of links. This is however only partly true, since monitors
would have to be implemented using a named and dedicated process for each
node. This means that in order to get a correct behavior we have to ensure that
no one is for example killing the monitor process. Therefore, it is not obvious
how to implement monitors in terms of links and it seems that we have to make
some non-trivial assumptions.

7 Related Work

The semantics for Erlang is informally described in [2]. Thereafter, a first, not
completed, attempt to formally specify the semantics of Erlang was made by
Petterson [20]. Petterson, inspired by similar work with Standard ML and Rela-
tional ML, used Natural Semantics but did not finish the work. Following this,
the Formal Design Techniques group at the Swedish Institute of Computing Sci-
ence (SICS) developed a number of formal (operational) semantics for different
subsets of Erlang, for example [12] and [13]. These attempts, compared to the
semantics presented by Fredlund in [15], are not as direct and lacks the clear
separation between the functional and the concurrent part of the semantics. A

88 A More Accurate Semantics for Distributed Erlang

completely different approach is taken by Huch in [19]. Huch present a seman-
tics for (a smaller subset) of Erlang, which is more direct and relies heavily on
contextual information. All these approaches except Petterson’s consider systems
which are not fully distributed since they do not deal with nodes.

Both [12] and [19] make use of subsets of Erlang referred to as core fragments
of Erlang. These references should not be confused with the Core Erlang project
[10], which defines a complete (with respect to representing all possible Erlang
programs) core fragment of Erlang. Core Erlang is in the Erlang compiler used
as the intermediate format where optimizations and transformations are applied,
therefore its use is mostly syntactic. For Core Erlang the semantics is given in
a structured but also informal way, and does not directly speak about nodes or
message delivery.

The distributed semantics for Erlang presented in [11] has been used in a
model checker for Erlang, McErlang [16]. Implementing a model checker is the
ultimate test for a semantics, and several limitations were indeed found, which
motivated the further work on a distributed semantics for Erlang.

8 Conclusions and Future Work

In 2005, we proposed an extension of the Fredlund’s single-node semantics into
a distributed (multi-node) semantics for Erlang [11]. We augmented the single-
node semantics with a distributed layer, and were able to successfully model
multi-node programs in the extended semantics. Together with the distributed
semantics there was also a warning to the community of potential pit-falls with
testing and verification using a single-node semantics.

Later the multi-node semantics was used in the implementation of a model
checker for Erlang (McErlang, [16]). The model checker implementation revealed
some inconsistencies as well as a major shortcoming in the multi-node semantics.
The main problem was the Erlang behavior in the case of node disconnect. Two
Erlang nodes can become disconnected from each other if the link between them
fails, when this happens both involved nodes regard the other node as dead.
This does have some interesting consequences when the nodes later re-connect.
The correct behavior was later implemented in the model checker, however this
behavior could not be modeled in the multi-node semantics we had proposed.

In this new presentation of a distributed semantics for Erlang, we have re-
structured some parts of the distributed layer. Further, we have added the node
disconnect functionality, we have corrected errors in the original presentation and
we have simplified and clarified the presentation in many aspects. The result is
a more accurate and more expressive multi-node semantics for Erlang, with a
clearer presentation and less complicated semantic rules. We have also added a
discussion of the desired properties of the multi-node semantics.

Future Work The introduction of multi-core computer systems and the
development of a SMP-version of the Erlang run-time is already a fact. And it
will be interesting to see if there are any new semantic implications because of
this. There is also further work to be done with model checking Erlang in the
distributed setting.

REFERENCES 89

Acknowledgements

We thank Koen Claessen for his valuable comments on earlier versions of this
paper.

References

[1] J. Armstrong. Making reliable distributed systems in the presence of soft-
ware errors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden,
December 2003.

[2] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding. Concurrent Pro-
gramming in Erlang. Prentice-Hall, Englewood Cliffs, New Jersey, USA,
second edition, 1996.

[3] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified Er-
lang program for resource locking. Int. J. on Software Tools for Technology
Transfer, 5(2-3):205–220, 2004.

[4] T. Arts, C. Benac Earle, and J. J. Sánchez Penas. Translating Erlang to
mCRL. In Fourth International Conference on Application of Concurrency
to System Design, pages 135–144, Hamilton (Ontario), Canada, June 2004.
IEEE computer society.

[5] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of a fault-
tolerant leader election protocol in Erlang. In Lecture Notes in Computer
Science, volume 3395, pages 140 – 154. Springer, Feb 2005.

[6] T. Arts and L.-Å. Fredlund. Trace analysis of Erlang programs. In Proceed-
ings of the 2002 ACM SIGPLAN workshop on Erlang, pages 16–23. ACM
Press, 2002.

[7] T. Arts and J. Hughes. Erlang/QuickCheck. In Ninth International Er-
lang/OTP User Conference, Nov. 2003.

[8] J. Barklund and R. Virding. Erlang 4.7.3 reference manual. Draft (0.7),
Ericsson Computer Science Laboratory, 1999.

[9] J. Blom and B. Jonsson. Automated test generation for industrial Erlang
applications. In ERLANG ’03: Proceedings of the 2003 ACM SIGPLAN
workshop on Erlang, pages 8–14, New York, NY, USA, 2003. ACM Press.

[10] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S. Nystrm, M. Pet-
terson, and R. Virding. Core Erlang 1.0 language specification. Technical
Report 2000-30, Department of Information Technology, Uppsala University,
November 2000.

[11] K. Claessen and H. Svensson. A semantics for distributed erlang. In ER-
LANG ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Erlang,
pages 78–87, New York, NY, USA, 2005. ACM Press.

90 REFERENCES

[12] M. Dam and L.-Å. Fredlund. On the verification of open distributed systems.
In SAC ’98: Proceedings of the 1998 ACM symposium on Applied Computing,
pages 532–540, New York, NY, USA, 1998. ACM Press.

[13] M. Dam, L.-Å. Fredlund, and D. Gurov. Toward parametric verification
of open distributed systems. In COMPOS’97: Revised Lectures from the
International Symposium on Compositionality: The Significant Difference,
pages 150–185, London, UK, 1998. Springer-Verlag.

[14] L.-Å. Fredlund. Towards a semantics for Erlang. In Foundations of Mobile
Computation: A Post-Conference Satellite Workshop of FST & TCS 99,
Institute of Mathematical Sciences, Chennai, India, Dec 1999.

[15] L.-Å. Fredlund. A Framework for Reasoning about Erlang Code. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, 2001.

[16] L.-Å. Fredlund and C. B. Earle. Model checking erlang programs: the func-
tional approach. In ERLANG ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang, pages 11–19, New York, NY, USA, 2006. ACM Press.

[17] L.-Å. Fredlund, D. Gurov, and T. Noll. Semi-automated verification of Er-
lang code. In ASE ’01: Proceedings of the 16th IEEE International Confer-
ence on Automated Software Engineering, page 319, Washington, DC, USA,
2001. IEEE Computer Society.

[18] L.-Å. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov.
A verification tool for Erlang. International Journal on Software Tools for
Technology Transfer (STTT), 4(4):405 – 420, Aug 2003.

[19] F. Huch. Verification of Erlang programs using abstract interpretation and
model checking. In ICFP ’99: Proceedings of the fourth ACM SIGPLAN
international conference on Functional programming, pages 261–272, New
York, NY, USA, 1999. ACM Press.

[20] M. Petterson. A definition of Erlang (draft). Manuscript, Department of
Computer and Information Science, Linköping University, 1996.

[21] M. Widera. Flow graphs for testing sequential Erlang programs. In ERLANG
’04: Proceedings of the 2004 ACM SIGPLAN workshop on Erlang, pages 48–
53, New York, NY, USA, 2004. ACM Press.

[22] U. Wiger. Fault tolerant leader election. http://www.erlang.org/.

[23] C. Wikstrom. Distributed programming in Erlang. In PASCO’94, First
International Symposium on Parallel Symbolic Computation, Linz, Austria,
Dec 1994.

Paper 4

McErlang: A Model Checker for a Distributed
Functional Programming Language

This paper was written together with Lars-Åke Fredlund for the 12th ACM SIG-
PLAN International Conference on Functional Programming (ICFP 2007), in
Freiburg, Germany, October 2007. The paper included here has a few minor
corrections and is also typeset in a different style.

93

McErlang: A Model Checker for a Distributed
Functional Programming Language∗

Lars-Åke Fredlund† 1, and Hans Svensson2

1 Facultad de Informática, Universidad Politécnica de Madrid, Spain
fred@babel.ls.fi.upm.es

2 Chalmers University of Technology, Göteborg, Sweden
hanssv@cs.chalmers.se

Abstract

We present a model checker for verifying distributed programs written in the Er-
lang programming language. Providing a model checker for Erlang is especially
rewarding since the language is by now being seen as a very capable platform for
developing industrial strength distributed applications with excellent failure tol-
erance characteristics. In contrast to most other Erlang verification attempts, we
provide support for a very substantial part of the language. The model checker has
full Erlang data type support, support for general process communication, node
semantics (inter-process behave subtly different from intra-process communica-
tion), fault detection and fault tolerance through process linking, and can verify
programs written using the OTP Erlang component library (used by most modern
Erlang programs).

As the model checking tool is itself implemented in Erlang we benefit from the
advantages that a (dynamically typed) functional programming language offers:
easy prototyping and experimentation with new verification algorithms, rich exe-
cutable models that use complex data structures directly programmed in Erlang,
the ability to treat executable models interchangeably as programs (to be executed
directly by the Erlang interpreter) and data, and not least the possibility to cleanly
structure and to cleanly combine various verification sub-tasks. In the paper we
discuss the design of the tool and provide early indications on its performance.

Categories and Subject Descriptors:D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Model checking

General Terms: Verification

∗ACM COPYRIGHT NOTICE. Copyright c©2007 by the Association for Computing Machinery,

Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom

use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than ACM must be honored. Abstracting with credit is

permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax

+1 (212) 869-0481, or permissions@acm.org.
†The author was supported by a Ramón y Cajal grant from the Spanish Ministerio de

Educación y Ciencia, and the DESAFIOS (TIN2006-15660-C02-02) and PROMESAS (S-
0505/TIC/0407) projects.

94 McErlang: A Model Checker for a Distributed FP Language

1 Introduction

To model check a modern distributed functional programming language is by no
means a small task and there are many design decisions that have to be taken.
One of the largest decisions is to choose between: (1) translating the program into
some existing formalism and use (or possibly extend) existing model checking tools
for this formalism, or (2) implement the verification algorithms directly for the
language to be model checked. (In fact there is also a third alternative, namely
to translate into a formalism which has been constructed for this particular task
and implement tools for this formalism. This approach is briefly discussed in
section 7.)

There are advantages (as well as weaknesses) with both approaches; Exist-
ing tools are probably optimized, and thus efficient to use. Translating into an
existing formalism means that everything in the language has to be modeled,
including data. Finding a suitable formalism might not be easy. Implementing
model checking algorithms efficiently is hard and time consuming. Having the
model checker in the language itself means that the pure functional part can be
handled in a simple and efficient way.

One existing model checking tool for Erlang is the etomcrl tool set [8], which
consists of a translator from Erlang to µCRL, a state space generator for µCRL
specifications, and the CADP state space analysis tools. Thus it is an example
of the first alternative above, however early in the development of etomcrl its
principal authors (Thomas Arts and Clara Benac Earle) were thinking of an
implementation in Erlang itself. In the end the Erlang route was rejected because
it was thought that it would be more efficient to reuse existing tools.

In this paper we describe the development and implementation of the McEr-
lang model checker which follows the second implementation alternative above.
The development of McErlang was started for several reasons. One reason was
the curiosity to find out just how well an implementation in Erlang would work
in practice. The main reason however was the wish to model check distributed as
well as fault tolerant Erlang programs. (Both distribution and fault tolerance are
missing in the etomcrl tool set). It was deemed too hard to extend the etomcrl
tool set with the concepts of distribution and fault tolerance. The importance of
supporting the distributed parts of Erlang is illustrated by Claessen and Svensson
[11]. In their paper they show that it easy to overlook errors due to the loose syn-
chronisation between processes in the distributed setting. They also demonstrate
the presence of such errors in an open source Erlang implementation.

One significant advantage that the implementation in Erlang itself brings is
that we can model check a larger fragment of the language than is normally achiev-
able. There is for instance no separate step to compile the data sub-language of
the source specification language to the often restrictive data language available in
a model checker. Instead supporting the (purely functional) data part of Erlang
is completely trivial; we can simply reuse the existing Erlang run-time system
unchanged. It is in our opinion crucial to support a large fragment of Erlang in
order to achieve some measure of acceptance of our tool by Erlang programmers.

The Erlang language contains many features not found in most normal pro-

1 – Introduction 95

gramming languages (unless add-on libraries are used): dynamic types (i.e., no
static type system), concurrency via a process concept, inter-process communica-
tion using only asynchronous message passing, distribution by mapping processes
onto (remote) processing nodes, fault tolerance via a failure detector mechanism,
and a standardized set of high-level components built on top of this foundation.
As Erlang programmers frequently make use of all these features we think it is
vital that the verification tool supports them too.

Nevertheless, by choosing to implement a model checker in a functional pro-
gramming language we risk paying a price with regards to loss of execution per-
formance and increased storage requirements; there is clearly a trade-off between
easy experimentation and expressive power on one hand, and implementation ef-
ficiency on the other. With the McErlang tool we want to explore this trade-off,
and we hope that by not having to simulate the functional parts of Erlang this
model checking approach is rather efficient.

Since we had access to a prototype implementation of the distributed Erlang
semantics in Haskell, we also did some experiments with implementing a model
checker for Erlang in Haskell. We did not implement a full model checker, but the
experiments gave us some insight in the strengths and weaknesses with such an
approach. In section 7 we briefly discuss these results to get a different perspective
on the McErlang implementation.

One of the design goals with McErlang was that it should be easy to use.
All that is needed to use McErlang is a program to test, a specification of the
environmental constraints and a property to check. All three are written entirely
in Erlang. The environmental constraints describe how the program is executed in
the implementation of the run-time system provided by McErlang. The property
is given in the form of a monitor/automaton that is executed in parallel with the
program, checking for errors along the execution path. This work flow is discussed
further in section 4 and section 5 and is illustrated in Fig. 7.

Contributions The main contribution of the paper is a presentation of the tool
McErlang. The paper is not so much about the theory behind model checking
or the semantics of Erlang, instead we focus on design choices, implementation
decisions, adaptability and usability. McErlang is a model checker for Erlang
implemented in Erlang, it supports a large subset of the Erlang programming
language. In particular it supports all of the distributed and fault-tolerant parts
of Erlang. This is especially important since distributed and fault-tolerant imple-
mentations are known to be error prone and hard to test and debug. McErlang
is also easy to use and should be accessible to an ordinary Erlang programmer.
Finally McErlang is designed in a very modular way and can easily be adapted
to support other target languages.

Paper organization The next section contains an introduction to the most
important features of the Erlang programming language and section 3 contains a
description of the most prominent features of the Erlang semantics. In section 4
the parametric design of McErlang is described and section 5 presents the model
checker itself, i.e., essentially an on-the-fly model checker which executes Büchi

96 McErlang: A Model Checker for a Distributed FP Language

automatons (coded in Erlang) in parallel with the Erlang program under study. In
section 6 we show some results and examples of using the model checker. Section 7
discuss a number of design choices in more detail, and section 8 summarises related
work. Finally section 9 draws conclusions, and outline future research work.

Download McErlang can be downloaded at the following location:
http://babel.ls.fi.upm.es/~fred/McErlang/.

2 The Erlang Programming Language

Erlang is a programming language developed at Ericsson for implementing tele-
communication systems [4, 2]. It provides a functional sub-language, enriched
with constructs for dealing with side effects such as process creation and inter–
process communication via message passing. Moreover Erlang has support for
writing distributed programs; processes can be distributed over physically sepa-
rated processing nodes.

Today several commercially available products developed by Ericsson and
other companies are at least partly programmed in Erlang, an example is the
AXD 301 ATM switch [10]. The software of such products is typically orga-
nized into many, relatively small, source modules, which at run-time execute as a
dynamically varying number of processes operating in parallel and communicat-
ing through asynchronous message passing. The highly concurrent and dynamic
nature of such software makes it particularly hard to debug and test.

Erlang programmers, of course, mostly work with ready-made higher-level
language components rather than the basic language. In practice programmers
predominantly use the OTP component library [28], which offers a number of
useful software components such as: a generic server component for client-server
communication, a finite-state machine component, and a supervisor component
that restarts failed processes. Our approach to model checking Erlang programs
can verify software that is built using both the core message passing language
and with these high level components.

A key feature of the systems for which Erlang was primarily created is fault-
tolerance. Erlang implements fault-tolerance in a simple way. Links between
two processes A and B can be set up so that process B is eventually notified of
the termination of process A and vice versa (using the normal message-passing
machinery). The default behavior of a process that is informed of the abnormal
termination of a linked process is to terminate abnormally itself. Alternatively
the linked process can specify that it wishes to receive a message with a notifi-
cation that its linked process has terminated. This process linking feature can
be used to build hierarchical process structures where some processes are super-
vising other processes, and can take corrective action (e.g., restarting them) if
they terminate abnormally. In order to create such fault-handling structures,
Erlang/OTP provides the supervisor behavior.

Another key feature of Erlang systems, which is particularly useful for 24/7
systems, is the mechanism for hot code replacement. In short it is possible to
phase out old code and replace it with new code, having both old and new code

3 – Semantics 97

running simultaneously. This feature enables bugs to be corrected and features
to be added without stopping the system.

In summary, the Erlang/OTP programming environment is a comparatively
rich programming environment for programming systems composed of (possibly)
distributed processes that communicate by message passing. Fault tolerance is
implemented by means of failure detectors (the linking mechanism), a standard
mechanism in the distributed algorithms community. Moreover there is a process
fairness notion, something which often makes it unnecessary to explicitly specify
fairness in correctness properties. Moreover the language provides explicit con-
trol of distribution, and a clean model of distribution semantics. For distributed
processes (processes executing on separate nodes) the communication guarantees
are far weaker than for processes co-existing on the same processor node. This
gives, in a clean way, considerable power with regards to checking a program
under different environmental constraints (simply changing the mapping of pro-
cesses to nodes), but on the other hand there is a requirement on implementing
the run-time system with different guarantees for inter-node and intra-node com-
munication.

Multi-core programming The concurrency oriented nature [3] and the (al-
most) transparent distribution makes Erlang a really good candidate for writing
efficient distributed software. With the latest version of the Erlang Run-time
System [13] this is taken even further, as it includes built-in support for SMP
(Symmetric Multi Processing). SMP is today supported by most modern op-
erating systems and becomes more and more important with the introduction
of dual/quad/. . . processors, multi-core systems and hyper-threading technology.
The SMP support in Erlang is transparent since most problems occurring in
multi-threaded programs are solved by the Erlang VM. The SMP version of the
VM can have many process schedulers running inside each OS thread, the default
is to have as many schedulers as there are processors (or processor cores) in the
system. Since the SMP support is completely transparent we get ’for free’ an effi-
cient multi-core implementation if we have a correct distributed implementation.
This shows another benefit of having a working model checker for distributed
Erlang.

3 Semantics

Erlang is at the same time both a simple language, having at its core a fairly
uncomplicated dynamically typed functional language with eager evaluation, and
a fairly complicated one. The complexity is due to the addition of language
layers proving support for concurrency (processes and message passing), and
distribution (processing nodes that encapsulate processes) and fairly elaborate
inter-process fault detection and fault handling mechanisms (via process links
and process monitors).

The intuitive picture of the distributed semantics is rather simple, the guar-
antees given are simply: “communication between a pair of processes is assumed

98 McErlang: A Model Checker for a Distributed FP Language

to be ordered” as described by Armstrong [3]. The semantics of links and mon-
itors are also fairly easy to get an intuitive understanding of. However, the full
semantics for distributed Erlang is indeed complex. It consists of some rather
long and technical transition rules. Especially the corner cases, such as using the
link mechanism on a dead process, makes a presentation somewhat lengthy and
less intuitive than one could wish. Nevertheless, our formal description of the
semantics is layered in three layers in a very clear way.

• Functional Semantics - consists of the pure functional part of Erlang
(function evaluation, pattern matching, etc). It is dynamically typed and
fairly straight forward.

• Process Semantics - is above the functional semantics, and consists of
process evaluation rules (sending and receiving messages and links, start-
ing/terminating processes, and silent computation steps) as well as pro-
cess communication rules (process interleaving and process communication).
This is all for the single node case, that is all the involved processes are ex-
ecuting in the same run-time system.

• Node Semantics - is placed on top of the process semantics, and adds the
concepts of nodes and full distribution to the semantics. Similarly to the
process semantics it consists of node evaluation rules and node communica-
tion rules.

The functional semantics and the process semantics are described in detail
in Fredlund [15] and the node semantics is introduced in Claessen and Svensson
[11]. The layering described here is, as we see later, clearly mirrored in the
implementation of the model checker. Since it is not feasible to cover all aspects
of the semantics in this paper, we just highlight a few important details. With
the following example we show the importance of having the node semantics layer
and that our intuitive understanding of the semantics is not sufficient in all cases.

3.1 World Hello?

Consider the small Erlang program in Fig. 1. When we run the function world-

hello() it will spawn A, which in turn results in two processes being spawned
(B and C). Thereafter A will first send the message hello directly to C and then
send the message world to B. Process B is very simple, once it receives a message,
it will forward it to process C. Process C just receives two messages, and prints
the result. (?MODULE is a built-in macro which is replaced by the name of the
current module by the compiler, ?NODEi are ordinary macros defined elsewhere.)

The interesting aspect of this program is that the result of running the pro-
gram depends on the distributed environment! If the program is running on a
single node (that is ?NODE1 = ?NODE2 = ?NODE3), the result is always: hello

world. However if the program is running in a distributed environment (that is
?NODE1 6= ?NODE2 6= ?NODE3), the result could be either hello world or world
hello. The reason for this is that there are different communication guarantees
at the distributed level. In short; in a single run-time system message delivery

3 – Semantics 99

worldhello() ->

spawn(?NODE1,?MODULE,procA,[]).

procA() ->

PidC = spawn(?NODE3,?MODULE,procC,[]),

PidB = spawn(?NODE2,?MODULE,procB,[PidC]),

PidC ! hello,

PidB ! world.

procB(PidC) ->

receive world -> PidC ! world end.

procC() ->

receive X -> ok end,

receive Y -> ok end,

io:format("~p ~p\n",[X,Y]).

Figure 1: ’World Hello’-program

CA
1

hello

B
world world

2

3

4?

4?

Figure 2: Possible message sequences

is instantaneous (that is the message is immediately put in the receivers in-box),
while in a distributed system the only guarantee is that messages between a pair
of processes are ordered. The possible message sequences in the distributed case
is shown in Fig. 2.

The etomcrl tool for example (and the same goes for many other Erlang
verification efforts) does not have a notion of nodes at all, and therefore this
aspect cannot be checked. It is clear that this is a problem, since the difference in
communication guarantees is a definite source of errors in Erlang systems (see for
example Arts et al. [9]). It was therefore a strong requirement on McErlang that
it should handle the node semantics. In fact, it is fair to say that the major part
of the implementation effort of the model checker has been devoted to an accurate
treatment of the often surprisingly complex semantics of the node semantics part
of the run-time system.

100 McErlang: A Model Checker for a Distributed FP Language

3.2 Semantics implemented in McErlang

The McErlang tool has a full implementation of the distribution part of Erlang
(i.e., explicit programmatic mapping of processes to explicit nodes), and thus
provides the possibility to verify code based on either the assumption that all
process are local (on the same node), or remote (all processes reside on different
nodes), or a mix of the disciplines. Thus it is possible to verify a program under
quite weak communication guarantees and be sure that later processes can be
freely mapped on distributed nodes. However, the drawback of the distributed
semantics is that it greatly increases the state space of the verified programs;
essentially the distributed semantics non-deterministically delays the delivery of
messages to a receiving process.

4 Structure of the Implementation

The model checker implementation is parametric, using the Erlang/OTP style of
behaviors to specify particular component behaviors that provide services to the
model checking algorithm.

The basic task of the model checker is of course to check a program against a
correctness property, a monitor module, that implements the correctness property
to check.

Except specifying which program to check (a specific Erlang function), and
which Erlang module that implements the correctness property, a user of the tool
can also choose:

• the name of a language module providing an operational semantics,

• the particular verification algorithm to use, (e.g., a safety property checker,
a liveness property checker or just testing – i.e., simulation of the program
in conjunction with a correctness property),

• the name of a state table implementation, that records encountered program
states (typically a hash table), and

• the name of an abstraction module that abstracts program states,

The modular composition of McErlang is illustrated in Fig. 3, and in the
following sections we describe the functionality of these modules in turn.

4.1 Source Language

The language module should provide two functions implementing an operational
semantics for the language: (i) transitions which given a state returns a list of
all next actions executable by the program, and (ii) the function commit which
given an action returns a concrete program state. The transitions function may
not cause side effects outside the model checker environment (e.g., really writing
out a file to the file system) whereas commit may (if used by the simulation algo-
rithm). The language module most commonly used is clearly the one providing

4 – Structure of the Implementation 101

Figure 3: McErlang modular structure

an operational semantics for Erlang, however, we have also implemented an op-
erational semantics for the WS-CDL web choreography language [30]. Although
the effort is less mature than the Erlang model checker, it is interesting that
the basic framework of the model checker can be reused in a different language
setting [16]. As XML and XPath constitutes integral parts of the WS-CDL defi-
nition, having good support libraries available for these languages is very useful
when representing their operational semantics. As Erlang has seen considerable
industrial usage, the language already had good library support for working with
XML based documents; we expect the same kind of advantages from using Erlang
when providing model checkers for other target languages.

4.2 Correctness Properties

Correctness properties are encoded as automata programmed in Erlang. A safety
monitor is a function which is checked in every reachable program state, and
which returns an error if an invalid state is seen. A Büchi monitor (automaton)
is a monitor that additionally may mark certain states as accepting. A program
violates a Büchi monitor if a cycle can be found in the combined state space
of the program and the monitor, which contains an accepting state. As is well
known [29], linear temporal logic formulas can be automatically translated to
Büchi automata.

The memory aspect of monitors is implemented by sending along the old
monitor state as an argument to the Erlang function implementing the moni-
tor. Concretely a monitor defines two callback functions: init(parameters)

and stateChange(programState,monitorState). The init function returns
{ok,monState} where monState is the initial state of the monitor.

The stateChange function is called when the model checker encounters a new
program state programState and the current monitor state is monitorState .
If a safety monitor finds that the combination of program and current monitor
state is acceptable, it should return a tuple {ok, newMonState} containing the
new monitor state. If future states along this branch are uninteresting the mon-
itor can return skip (e.g., to implement a search path depth limit), any other
value signals a violation of the correctness property implemented by the moni-
tor. A Büchi automatons should return a set of states, each state either accept-
ing {accepting,state} or not {nonaccepting,state}. Normally we expect a
“sound” stateChange function to be without side effects.

102 McErlang: A Model Checker for a Distributed FP Language

As an example, the code fragment in Fig. 4 implements a simple safety monitor
that guards against program deadlocks: (a process is considered deadlocked if its
execution state as recorded by the process data structure in the run-time system
is blocked).

stateChange(State,MonState) ->

case lists:any

(fun (P) -> P#process.status =/= blocked end,

State#state.processes) of

true -> {ok, MonState};

false -> {deadlock, MonState}

end.

Figure 4: Simple safety monitor

The syntax variable#recordName.field is used to access the field field of the
record variable variable , of type recordName .

4.3 Algorithms

The McErlang tool currently offers two basic on–the–fly depth-first state traversal
model checking algorithms, one to check safety properties and the other to check
Büchi automatons (the liveness checking algorithm adapted from Holzmann et al.
[21]). To give an intuition to the coding of these algorithms in Erlang, a schematic
representation of the algorithm for safety property checking is depicted in Fig. 5
(we have abstracted out the parameter passing of modules implementing language
(Lang), monitors (Mon), abstraction (Abs) and table implementation (Tab)).
To check an Erlang function call m :f (p1,...,pn), given an initial monitor state
monState and an empty state table t , and abstraction state a , the checking
algorithm should be invoked with:

check([[{mkProc(m,f,[p1,...,pn]),monState,t,a}]])

where mkProc constructs a model checking process executing the function call
argument.

As seen in the listing, model checking states are composed of a program state,
a monitor state, a state table, and an abstraction state. Program states are
checked against the monitor, and if accepted, are abstracted using an abstraction
function provided by the module Abs. The abstracted states are checked against
membership in the state table. If the program state is new, the set of next states
is computed using the function transitions. Note that the particular choice of
abstraction and table storage is abstracted out from the algorithm itself.

In addition there is a simple simulator available, which by default chooses the
next program state randomly, but in addition has some debugging functionality,
e.g., next states can be explicitly chosen, transitions can be single or multiple
stepped, breakpoints can be set, and backtracking to previous states is supported.
The simulator is also used to explore safety model checking counterexamples
(traces).

4 – Structure of the Implementation 103

check([]) -> ok;

check([[]|Earlier]) -> check(Earlier);

check([[State|Alts]|Earlier]) ->

{ProgState,MonState,StateTab,AState} = State,

% Check monitor

{ok,NewMonState} =

apply(Mon,stateChange,[ProgState,MonState]),

% Abstract state

{ok, {AbsState,NewAState}} =

apply(Abs,abstractState,

[{ProgState,NewMonState},AState]),

% Check whether state already seen

case apply(Tab,addState,[AbsState,StateTab]) of

no ->

check([Alts|Earlier]);

{ok, NewStateTab} ->

NewStates =

[{S,NewMonState,NewStateTab,NewAState} ||

S <-

lists:map

(fun (Action) -> apply(Lang,commit,Action),

apply(Lang,transitions,[ProgState]))],

check([NewStates,Alts|Earlier]])

end

end.

Figure 5: Safety property checking algorithm

Fairness Constraints on Executions The Erlang language standard requires
that process schedulers must be fair. The McErlang tool accordingly implements
(weak) process fairness directly in its (liveness) model checking algorithm by
omitting non-fair loops (i.e., ones that constantly bypass some enabled process)
from the accepting runs.

4.4 Tables

A state table records pairs of program and monitor states encountered during
model checking, to detect recurring states. The state table implementations used
are normally imperative (e.g., updates to them are destructive) for performance
reasons; however purely functional implementations of the tables are available.

104 McErlang: A Model Checker for a Distributed FP Language

-module(hashAbs).

-export([init/1, abstractState/2]).

init(Size) ->

{ok,Size}.

abstractState(State,Size) ->

{ok,{erlang:phash2(State,Size),Size}}.

Figure 6: Abstraction module for hashing

4.5 Abstractions

An abstraction abstracts a concrete program state into an abstract representation.
It can be used to drastically reduce the checked state space of a program. The
idea is inspired by the use of abstractions in Arts and Fredlund [5]. A typical
abstraction used in model checking is to compute a hash value from the state,
and to use the hash value as the abstract state when checking for membership
in the state table. However, program specific abstraction functions can also be
implemented. For example, an abstraction could transform an integer variable
into a boolean value, signaling whether the integer is less than zero. Clearly, there
is in general no guarantee that such an abstraction is safe, i.e., that it does not
cause a program failure to escape undetected (false positive).

As a second example we have implemented the usual abstraction of collaps-
ing a whole state to a single integer (through hashing), and using a bit array
table module to implement the state table. Thus, in a modular fashion, we have
obtained an implementation of Holzmann’s bit-state hashing verification algo-
rithm [20]. An implementation of a hashing abstraction thus becomes as simple
as Fig. 6, where erlang:phash2 is a built-in function which computes a hash
value between 0..Size for its term argument. Note that is an unsafe abstraction,
although as proven in practise in many verifications, also a highly useful one.

5 Executing Erlang Programs in McErlang

The model checking capability for Erlang programs is provided by executing Er-
lang programs directly in the existing Erlang run time system. This enables an
easy and reasonably efficient handling of computations that act solely on data
(the purely functional sub-part of Erlang). However, the existing Erlang run
time system does not provide a method to capture the combined system state
of a running program (check-pointing). This is unavoidable, since in general an
Erlang computation could be distributed and so the combined state cannot be
efficiently, or even reliably, collected.

For this reason we have implemented in Erlang a new run-time system for the
concurrent and distributed part of the language, that implements easy access to
the combined system state of an Erlang program. This run-time system simply
simulates distribution and concurrency, all computations take place inside a single

5 – Executing Erlang Programs in McErlang 105

real Erlang process. Structurally the new run-time system is layered on top of the
old one, replacing only the process handling and the concurrency part of the old
system. This layered structure also in many ways resemble the layered structure
of the Erlang semantics in section 3.

Essentially a complete verification model consists of three parts: (1) an Erlang
program containing the original program to be checked, (2) a re-usable implemen-
tation of the run-time system (also written in Erlang) and (3) a specification of
the environmental constraints (e.g., which process/node failures and link failures
occur). See section 6.2 for a concrete example of such environmental constraints.
By separating the model cleanly into these three parts we can independently
experiment with different assumptions/implementations. The workflow is illus-
trated in Fig. 7.

Figure 7: McErlang workflow

5.1 Run-time Organization

The state of the run-time system, e.g., recording process states, communication
queues and so on (see section 5.3 for details), is stored in the imperative Erlang
process dictionary; all (simulated) model checking processes run, interleaved, in
a single Erlang process. All state updates and queries are thus implemented as
accesses to the process dictionary. We have also experimented with a solution
where the state of the run-time system is kept in a separate process, a solution
more in the spirit of the Erlang design philosophy. Unfortunately, that solution
severly impacts on the speed of model checking, slowing down a typical verification
with a factor of three compared to the process dictionary solution. An obvious
alternative would be to pass along the global state as a parameter everywhere
in the verifier code. In e.g. Haskell cleaner as well as more efficient solutions are
obviously possible.

106 McErlang: A Model Checker for a Distributed FP Language

5.2 Translation

A vital part of the model checker is a compiler that translates an Erlang program
to be verified to a modified Erlang program that uses the new run-time system.

Actually we still use the old runtime system to execute even the translated
functions (this is to avoid having to re-implement any part of the data handling
in Erlang). However, calls to Erlang functions with side effects in the old runtime
system have been replaced with calls to Erlang functions with side effects in the
model checker instead.

The principal goal of the translation is to transform Erlang functions that use
the receive construct‡ so that instead of executing that construct, which would
immediately hang the execution of the model checker as there would be no value
to be received, the modified function instead returns a special return value. The
return value indicates the desire to receive a message, and a continuation function
coding the normal execution of the function after the reception of the message.

The translation takes a set of modules as input and returns a set of trans-
lated ones. The resulting Erlang modules can be compiled by the normal Erlang
compiler (which is a requirement for using the model checker).

In case the compiled application makes use of OTP components (generic
server, supervisor, etc. . .) the McErlang tool will include in the compilation
the source code of tailored versions of these libraries, written in Erlang of course.

Replacing API calls Apart from transforming code that uses the receive

construct, the translation does a very simple transformation of other API calls
such as e.g. sending a value to a process.

As the Erlang language lacks a good reflection capability, the new run-time
system is provided as a new application library evOS. For example, an application
that used to send a message {request,22}§ to a process with process identifier
pid using the send construct pid !{request,22} should instead call the library
function evOS:send(pid,{request,22}). The functions that implement the new
API calls are implemented in Erlang itself and operate directly on the global
system state (nodes, ether, processes, links, and a register map as discussed in
section 5.3 below).

Handling Reception of Messages The mapping of calls to Erlang API func-
tions to the new run-time system works for all Erlang constructs except the
receive statement which is used by a process to retrieve a value from its mail-
box (or process queue), as the receive call suspends until a matching value is
available.

Instances of receive statements in the Erlang code to be model checked
are instead replaced with code that returns a tuple like: {recv,{module, fun,

context}, where the contained inner tuple {module,fun,context} identifies a
function that implements the logic of the particular receive statement.

‡receive is a process construct to retrieve a value sent to the invoking process.
§A tuple containing a literal symbol request and the number 22. In Erlang variables begin

with a capital letter and atoms (literals) with a lowercase letter.

5 – Executing Erlang Programs in McErlang 107

When an invoked Erlang function, in an Erlang process, returns such a recv

tuple the new run-time system recognizes the special return value and marks the
process as blocked, and then checks whether there is any receivable value in the
process mailbox (in which case the process status is upgraded to receivable).
In any case, the run-time system can schedule another enabled process.

The transformation of an Erlang program containing a receive statement
into one returning a recv expression is explained by the small example in Fig. 8
and Fig.9.

server(State) ->

receive

{new_state, NewState, Pid} ->

Pid!{reply,State},

server(NewState)

end.

Figure 8: Receive statement – before translation

The code fragment in Fig. 8 defines a function server which guards some pri-
vate state. The state can be changed by sending a call message to the server
process, containing a process identifier and a new state. The server replies with
the old state. The translation of the server function is shown in Fig. 9. In
the transformed code, a call to server(state) will immediately return a tuple
{recv,{?MODULE,f 0,[state]}} which is a special form recognizes by the model
checker.

In general the function referenced in recv should accept two parameters, a
message in the queue to be tested whether it is receivable, and a list of variables
needed in the evaluation of receive. If the message is receivable, the function
should return a tuple with a new anonymous function; if not false should be
returned. The anonymous function receives the same parameters as the original
function, and contains the body of the receive clause. The separation of receive
into two functions serves to separate the testing whether a message is receivable
from the actual retrieval of the message from the queue (as the process could
continue by performing some side effect).

server(State) -> {recv, {?MODULE, f_0, [State]}}.

f_0({new_state, NewState, Pid}, [State]) ->

{true,

fun ({new_state, NewState, Pid}, [State]) ->

evOS:send(Pid,{reply,State}), server(NewState)

end};

f_0(_, _) -> false.

Figure 9: Receive statement – after translation

108 McErlang: A Model Checker for a Distributed FP Language

Handling a non tail-recursive receive The translation of the receive con-
struct sketched above is correct only when it occurs in a tail-recursive position.
For the general case, what is essentially a run-time stack is used instead.

The run-time stack is implemented using another special return value:
{letexp,{expr,{module,f,parameters}}}, which is used in a situation where
a receive statement occurs in an expression context (i.e. not in a tail-recursive
position). Consider for example the recursive function server in Fig. 10 which
repeatedly calls a function doRequest which in turn contains a receive statement.

server(State) ->

{ok, NewState} = doRequest(State),

server(NewState).

Figure 10: Non tail-recursive receive – before translation

The example in Fig. 10 is translated into a letexp return value as seen in
Fig. 11. The function referenced in the letexp special expression is called when
the inner function has returned a value, and receives as arguments the returned
value as first argument and as second argument a list of variables necessary in
the continued computation. In general all non tail recursive calls to functions
that contain a receive in their body will have to be similarly guarded using a
letexp. We use a global analysis over the set of input modules to the translator
for computing the transitive closure of which functions may execute a receive

statement.

server(State) ->

{letexp, {doRequest(State), {?MODULE, f_1, []}}}.

f_1({ok,NewState}, []) ->

server(NewState).

Figure 11: Non tail-recursive receive – after translation

The translation is somewhat complicated by the need to support the Erlang
“feature” of permitting variable bindings to migrate out of their scope. The
Erlang example in Fig. 12, which compiles without warning and does not cause
run-time errors, illustrates the translation difficulty (Logger is assumed to be
bound to a process identifier). Note that the variables Msg and NewV are bound
in different branches of the receive construct, but may still be used outside of
it.

Non-determinism in Erlang Another special return value is
{choice,[{module, fun,context},...]} which introduces explicit non-
determinism in Erlang; the model checker will non-deterministically select the
continuation function from the list of function alternatives. This construct is

5 – Executing Erlang Programs in McErlang 109

pingOrpong(Logger) ->

receive

{ping,V,Sender} ->

Sender!{Msg=pong,NewV=V+1,self()};

{pong,V,Sender} ->

Sender!{Msg=ping,NewV=V+1,self()}

end,

Logger!{Msg,NewV},

pingOrPong(Logger).

Figure 12: Migrating variable bindings

needed to use Erlang as a specification language rather as a programming one.
As an example, suppose that we have implementing a drink machine in Erlang,
offering either coffee or tea. Using the choice construct it is easy to model a
machine user that non-deterministically selects either coffee or tea, and to verify
that the program works correctly regardless what drink the user chooses (the
model checker automatically explores both possibilities).

Finally {pause,{module,fun,context}} is short hand for a choice with a
single continuation function; it is used to facilitate detection of interesting states
in correctness properties.

5.3 Data Structures in the Run-time System

An Erlang state in our run-time system is a hierarchical structure and mimics to
a large extent the organization of the real run-time system (and the structure of
the layered Erlang semantics!) for Erlang, except, of course the state is physically
centralized.

The top level of the hierarchical structure is composed of a tuple

〈nodes , ether〉,

combining a data structure containing the nodes of the running system and an
ether data structure containing messages in transit between nodes. Each message
is identified by the following tuple:

〈receivingNode , sendingNode ,messageContent〉.

The ether data structure essentially has a separate queue of messages, sorted by
sending time, for each pair of sending and receiving nodes. This is needed since the
language guarantees that communication between any two nodes is FIFO-like, i.e.,
messages are delivered in order, if they are delivered at all. The messageContent
contains the message itself (e.g., a normal message sent between two processes or
a run-time event such as e.g. a notification of a process termination).

A node tuple

〈name, processes , registered ,monitors , node monitors , links〉,

110 McErlang: A Model Checker for a Distributed FP Language

is on the second hierarchical level. The processes field contains the processes
executing on the node, registered implements the Erlang name server which maps
(on a node basis) pids to symbolic names. The fields monitors , node monitors
and links is used in the three different process linking mechanisms available in
Erlang.

Each process is a tuple

〈status , expr , pid , queue, dict ,flags〉.

The field status records the execution status of the process, e.g., whether it is
blocked waiting on incoming messages, ready to run, or ready to receive an exist-
ing message. The expr field describes the next piece of code to execute, concretely
a named user-defined Erlang function and a set of actual parameters to invoke
the function with. The pid field is the system-wide unique process identifier of
the process, queue contains the messages sent to the process that are available for
reading (inter-node messages migrate from the ether data structure to the queue
whereas intra-node messages are directly put in the queue data structure, mim-
icking the different communication guarantees provided by the run-time system
for inter-node compared to intra-node communication). Finally dict contains a
process dictionary (the equivalent of imperative variables in Erlang), and flags
describes the setting of various process options.

Although the exact manner in which states are physically stored or represented
(e.g., on the stack of ’choice points’ and in the table of states previously seen)
during a model checking is fully configurable, the normal exact representation of
a state ensures that states are normalized, i.e., nodes are sorted in some order,
as are processes within an nodes, as are links (pairs of processes identifiers in a
node) and so on, to ensure a rapid check for state equality.

5.4 Model Checker Semantics

The tool implements a major part of the core erlang module in the Erlang/OTP
distribution omitting mainly functions to inspect the run-time system itself, to
obtain process status, timing functions, and ports (which are used to interface
with foreign, i.e. non–Erlang, code). In total we provide around 40 such API
functions, the implementation of which constitutes a significant portion of the
lines of code of the model checker.

The operational semantics implemented by McErlang comprise an interleav-
ing transition relation between Erlang states whose actions are decorated by se-
quences of actions (i.e., a big-step operational semantics). States are comprised
by stable systems (e.g., where all processes are waiting in receive statements or
have just spawned) and transitions are caused by invoking a single enabled process
to run which may cause many side effects until it again becomes stable (waiting
in a receive statement).

The use of a big–step semantics means that some errors will go undetected
which would be caught using a smaller-step semantics. For the typically large
scale systems that we are interested in verifying with McErlang there is a trade-off
here. One option is to have a very detailed execution model with all the possibility

5 – Executing Erlang Programs in McErlang 111

non-determinism inherent in the programming language.¶ This quickly leads to
enormous state spaces with the result that only a very tiny part of such state
spaces can be explored by a model checker. On the other hand, we can reduce the
non-determinism in the specification language by slightly changing its semantics.
The result is smaller state spaces, which we can verify a bigger part of, but there
are possibly states that we can never check because they will never be generated
by the model checker. In future work we aim to implement a more finely-grained
semantics for intra-node Erlang to explore this issue in further detail.

Interestingly it turns out that we can recover a more finely-grained semantics
in case each process communicates only with other remote processes (located on
other nodes). Then a send, as well as any other side effect, will be arbitrarily
delayed (since the node ether data-structure is used, which essentially have sepa-
rates queues for all pairs of communicating processes, see section 5.3 for details)
compared to side effects caused by other processes, and so all interleavings of side
effects are recovered.

5.5 Run-time Environment Modeling

Probably the most challenging part of developing a model checker for Erlang is to
accurately model the environmental constraints put on a running Erlang program.
For example: constraints on scheduling Erlang processes, the semantic impact
of mapping processes onto remote processing nodes, the basic communication
guarantees of Erlang, and on the frequency of failures in a running system.

Moreover the Erlang API has quite a few functions with side effects, whose
actions cannot be understood as simply as sequences of lower-level primitives
(send and receive) but are first-class citizens in any operational semantics.

As an example we consider below the implementation, which is a form of
operational semantics, of the erlang API function exit/2. In Erlang, exit(Pid,
Reason) is used to send a termination signal to the process referenced by Pid,
which may be terminated as a result. The implementation has to handle the
rather subtle interplay between fault-handling mechanisms (linking, monitors)
and take into account process locality (on the same node, or not), etc. Moreover,
its behaviour is very different depending on whether the process to terminate
resides on the same node as the process executing the call or not.

Although the function may seem complicated, it is an intrinsic part of the
Erlang language, which is used by programmers all the time (as invoked in through
higher-level functions), and we have no choose but to model it faithfully if we wish
to verify realistic Erlang software.

¶As an extreme case, Erlang, for instance, does not fix the order of evaluation of arguments to
functions, so a totally faithful semantics would generate all such orderings. As Erlang program-
mers can happily write code that cause side effects in the evaluation of function call arguments,
generating all such orderings may be highly important in model checking. However, the number
of extra states could be huge, although part of the overhead could be eliminated through use of
intelligent reductions. In practise, however, the only available Erlang language implementation
does fix the order of argument evaluation, and in our opinion this is very unlikely to ever change
in the future of Erlang.

112 McErlang: A Model Checker for a Distributed FP Language

Implementation sketch:

1. First the arguments are checked; if Pid is not a process identifier an excep-
tion is raised.

2. The code then checks if Pid is a local pid (i.e., the corresponding process
resides on the same node as the process which executes the exit/2 call. If
the process is remote, a signal (a message) is sent to the node on which
the process resides containing a request to issue an exit/2 call, and the
function returns.

3. If it is a local process, the process flags are retrieved. The process traps exit
messages if the flag trap exit is set. If trap exit is set, and the Reason

argument is not kill, a message, {’EXIT’,self(),Reason}, is put into
its mailbox (where self() evaluates to the pid of the process that called
exit/2), and the function returns.

4. If the process is local, and it is not trapping exits, and the Reason argument
is normal, the process is not terminated (and no message is put in its
message queue), and the function returns.

5. Otherwise (the process is local, the reason is kill, or. . .) the process is
terminated, i.e., it is removed from the process table.

6. Moreover any registered names for the process are removed (by modifying
the registered element in the node).

7. And any monitors the now terminated process has set up are removed (all
nodes are searched for such monitors), and messages concerning terminated
processes due to such monitorings are removed (from the ether element).

8. Then every process that has requested to monitor the terminated process
(information present in the monitor field of the node structure) are sent a
message informing them of the termination of the process they monitored,
and the reason for termination.

9. Then all the links mentioning the terminated process are examined (recor-
ded in the links field of the node structure). If a link mentions a remote
process, then the remote process is sent a signal (message) informing it
that one of its linked process has terminated. If the process is local, the
linked process is itself a candidate to terminate immediately, and execution
contains for the linked process with roughly step 3 above.

As is indicated in the last step, in Erlang the termination of a process can,
through the link concept, cause the termination of more processes, and so on,
in a chain reaction. Although at first counter-intuitive, the idea is to use this
behavior of the linking mechanism to write fault tolerant code. Essentially some
processes are designated as supervisor processes, which are responsible for starting
processes, and handling their termination by optionally restarting them. Such
supervisor processes set the trap exit flag to have termination message delivered

6 – Evaluation 113

to their message queues. Their clients on the other hand generally do not set the
trap exit flag, since they do not contain programming logic to handle faults.

Many Erlang programs are written to be fault-tolerant, using the linking or
monitoring mechanism, and although using ready-made components‖ make the
task easier, programming fault tolerant applications is still hard, and being able
to check code under adverse run-time conditions using a tool such as our model
checker is a significant help.

Ensuring Finite Models Clearly the efficacy of the model checking algorithm
depends crucially on whether the checked Erlang program is finite state or not.
However, note that for checking non-compliance this is not always necessary. For
instance, we can easily code a monitor that raises an alarm whenever a process
mailbox contains more than, say, N messages. Similarly, an abstraction (see the
discussion in section 4.5) could simply cut the mailbox when it has grown too
large.

Still, in model checking Erlang there are at least two sources of trivially infinite
models that we need to avoid: the assigning of process identifiers to new processes,
and the use of unique references to uniquely identify (generic server) calls. We
solve both problems by consistently choosing the least fresh process identifier
(or communication tag) absent from both the current program state and the
correctness monitor.

6 Evaluation

To evaluate the use of McErlang we have used it on several non-trivial exam-
ples, ranging from a resource locker to a Video–on–demand server. Here we
focus on two examples, first a simplified resource manager (or locker) originally
implemented and verified by Arts et al. [8]. Their locker is based on a real im-
plementation in the control software of the AXD 301 ATM switch developed by
Ericsson. The second example is an implementation of a leader election algo-
rithm. The implementation is (loosely) inspired by an algorithm presented by
Singh [25]. Also this example originates from the AXD 301 ATM switch, but the
particular implementation we studied here (and which have been studied before
by Arts et al. [9]) is an open source version written by Wiger [31].

The two examples aims to show different aspects of McErlang, the locker ex-
ample is comparing McErlang with etomcrl and does not use the distributed
features of McErlang. On the other hand, the leader election example is dis-
tributed (and fault-tolerant) and the example shows that it is possible to find
errors in a distributed application with McErlang.

Other case studies realized using McErlang include the verification of an im-
plementation of the Chord peer–to–peer protocol [26], another implementation of
a leader election algorithm namely Stoller’s leader election algorithm [27], and of
the above mentioned Video–on–demand server [17].

‖Such as, for example, the OTP supervisor pattern and the OTP generic server that are
prepared to handle errors.

114 McErlang: A Model Checker for a Distributed FP Language

6.1 Resource manager

The locker is responsible for a number of resources, to which it can give clients
exclusive or shared access, and which can survive client failures. To compare
performance with the etomcrl tool we here focus on checking a single property∗∗:
is the locker safe with regards to mutual exclusion? That is, if a client requests
exclusive access to a resource, and is granted access, then no other client will
access the resource.

The source code of the example is split into four Erlang modules (files): (1) a
module implementing a (parametric) client repeatedly accessing the locker using
the gen server OTP client-server component, (2) the source of a fault–tolerant
locker, (3) a module implementing a supervisor process for starting the clients
(using the supervisor OTP component), and (4) a supervisor that starts both
the server and the client supervisor. In total around 430 lines of Erlang code.

The mutual exclusion monitor is provided in a separate Erlang module (around
60 additional lines of code); it checks whether multiple clients think they have
access to the same resource, and at least one client has exclusive access (a mutual
exclusion failure). In the client source we make visible the property of having ac-
cess to resource by introducing a state using the pause value: {pause,{?MODULE,
inUse,[Resources]}} which documents the resources and lock types the client
thinks it has acquired.

Results As a comparison with etomcrlwe present some figures for the checking
of the locker example in table 1 below. The configuration column indicates, in a
schematic manner, the model checking scenario used. For instance aEaEaEaEaS
is a configuration with four clients requesting exclusive access to the resource
a, and one client requesting shared access. The timing column shows the time
for generating the transition system (for etomcrl, via the instantiator tool) and
both the time to generate the transition system and check the mutex property for
McErlang. The states column represents the number of states in the generated
models. Note that for McErlang we use a non-lossy hash-table to store the state
table.

etomcrl McErlang
configuration time states time states
aEaEaEaEaE 52s 34282 17s 52197
aEaEaEaEaS 36s 28014 17s 50805
aEaEaEaSaS 39s 30814 18s 56313
aEaEaSaSaS 1m 4s 51928 25s 75801
aEaSaSaSaS 2m 49s 135038 42s 130101
aSaSaSaSaS 9m 29s 466702 1m39s 284277

Table 1: Comparison of etomcrl and McErlang

∗∗Since etomcrl in contrast with McErlang does not support checking fault tolerance we did
not introduce failures in the checked model; this was done in a separate experiment.

6 – Evaluation 115

The table shows that in less complex scenarios, etomcrl creates smaller state
spaces than McErlang. However, in complex scenarios (a scenario with more
sharing is more complex, since many processes can request and succeed in getting
a sharing lock on a resource at the same time) the difference in number of states
evens out. The tool experiments were performed on a HP xw6400 workstation
with four Intel Xeon CPUS each running at 1.60GHz (although neither tool made
us of more than one CPU) and with 2 GB of memory, running Ubuntu 7.04.

It is hard to draw firm conclusions from the performance figures, although it
is a promising sign that the time needed to generate the transition system using
McErlang is competitive with the instantiator tool [32], as the instantiator is
written in C and can be expected to be heavily optimized by now.††

6.2 Leader election

The objective of the leader election algorithm is to elect a leader among a fixed
set of participants. This may seem trivial at first, but in a distributed and fault
tolerant setting there are many subtle things that makes it a hard problem (and
a well studied problem [24, 12] as well). Each node has a single leader election
process, and the processes communicate with messages and also uses monitors
to detect failures of other processes. There are two basic properties for leader
election:

• Safety – two processes can never be elected as leaders at the same time.

• Liveness – eventually a process must be elected as the leader (or there is
an infinite sequence of processes dying and restarting).

Both can easily be expressed as LTL-formulas (and hence as Büchi automatons).
Here we focus mainly on the safety property.

To illustrate the typical organization of a verification we provide some details
regarding the concrete files involved. The source code of the example is split into
three Erlang modules (files): (1) a module implementing the leader election algo-
rithm, (2) an environment for the leader election algorithm, and (3) a module that
contains the monitor for the safety property. The test scenario is schematically
illustrated in Fig. 13.

The environment module consists of code that initiates a set of nodes and
starts a leader election process on each node. The environment also spawn con-
troller processes (one for each node) that are responsible for killing and restarting
the local leader election process. The controller processes in turn are dictated by
a central stimuli generator (located on a separate node). The central controller
sends messages to the local controller processes, which then enforces the order
from the central controller (i.e., either killing or restarting the leader election
process). All communication between conrollers are normal Erlang communica-
tion and it is all part of the model checking experiment. The reason for this
somewhat strange stimuli generation structure stems from earlier testing, where
we used tracing in a way which worked best with this structure. However, this

††Version 2.17.13 of the µCRL toolset was used.

116 McErlang: A Model Checker for a Distributed FP Language

Figure 13: Leader election example organization

is a good example of one of the strengths of the everything–in–Erlang approach,
where the code from testing can be re-used (almost as is) as the environment
description in verification. Also, the flexibility of having the environment in a
separate module (which consists of ordinary Erlang code) is that we could easily
do a verification of only the start-up phase (or some other part of the state space,
such as just killing the process with highest priority) by just changing the module
with the stimuli code. Originally, the test code provides random stimuli, which is
not very suitable for model checking. The randomness is removed in our example
by setting the pseudo-random generator seed to a fixed value.

The monitor for the safety property is not very complicated, it only consists of
a check if there are two leaders elected in the current system state. The property
monitor is listed in Fig. 14. One thing that is clear from the listing in Fig. 14 is
the need for a set of convenience functions for accessing the states and retrieving
information from the state.

Results If the example is run in McErlang using the safety algorithm, and the
NotTwoLeaders monitor the result is a counter example. The time it takes to
reach a counter example is only a few seconds (depending on the seed choosen it
can take longer or shorter time) on a fairly modest workstation. The size/length
of the counter example includes around 50 transitions. The existence of a counter
example is not surprising, since other studies of the same algorithm [9] have
revealed errors. (The counter example described below is actually exactly the
same as the one labeled ’The first serious bug’ in that paper)

The counter example scenario is described in Fig. 15. The problem in the
scenario is that some communication is slower than other. Since in the protocol
only a majority of the involved processes needs to accept a candidate it is possible
that an existing leader (B in the scenario) could be outnumbered by newly started
and fast communicating processes (A and C in the scenario).

What is important to note is that the error found is only present in a dis-
tributed and fault tolerant semantics. That is, we could not have found this
error using a model checker (or other verification tool) that does not support the
distributed semantics of Erlang. We also have the possibility to search for the

6 – Evaluation 117

-module(monNotTwoLeaders).

init(State) ->

{ok,{safety,State}}.

stateChange(State,MonState,_) ->

case notTwoLeaders(stRecords(allProcs(State))) of

true -> {ok,State};

false -> {error,stRecords(allProcs(State))}

end.

allProcs(State) ->

lists:flatmap

(fun (Node) -> Node#node.processes end, State#state.nodes).

stRecords([]) -> [];

stRecords([P|Rest]) ->

case P#process.expr of

{recv,{ev_gen_server2,_,{Rec,_}}} ->

[Rec|stRecords(Rest)];

_ ->

stRecords(Rest)

end.

isLeader({P,{_,State}}) ->

Ldr = State#data.leader,

P#process.pid == Ldr.

notTwoLeaders(States) ->

length(lists:filter(fun isLeader/1,States)) < 2.

Figure 14: Safety property monitor – NotTwoLeaders

Three processes A,B,C (with priority A > B > C):

B is started

B: Send ’capture’ to A,C and monitor A,C.

B: Receive ’Down’ from A.

B: Receive ’Down’ from C, broadcast ’elected’.

B is the leader

A is started

C is started

A: Send ’capture’ to B,C and monitor B,C.

C: Receive ’capture’ from A, Send ’accept’ to A.

A: Receive ’accept’ from C, broadcast ’elected’.

A is the leader

Figure 15: Counter example from leader election

118 McErlang: A Model Checker for a Distributed FP Language

shortest path leading to an error (again what is the shortest vary due to the intro-
duced randomness). Having the shortest counter example is often desirable since
it includes the least amount of unnecessary information. A search for the shortest
path to an error is of course slower, sometimes several order of magnitudes slower.
In one of our examples a search took about 30 minutes, and explored somewhere
around 10 million states.

7 Discussion

In this section we want to discuss some alternative implementation aspects. As
mentioned in the introduction we made some experiments with a prototype imple-
mentation of the distributed Erlang semantics in Haskell. The prototype consisted
of an Erlang parser and a layered run-time system with flexible control of path
choice, etc. It supported all the distributed features of Erlang, but a lot of the
more basic pure functional things were missing.

We asked ourselves if it would be possible to use such an implementation as
the starting point for a model checker for Erlang as well. Much of the work with
McErlang has gone into accurately modeling the node level semantics of Erlang.
Starting instead with an implementation of the distributed semantics that task
would be much simpler. We also think that a lot of the modular structure of
McErlang could be the same in a Haskell implementation.

We have identified some advantages with a Haskell approach as well as some
drawbacks. One of the major drawbacks is that one looses the ability to re-use
the existing evaluation mechanisms for the purely functional part. This means
that every lower-level built-in pure function and data structure has to be dealt
with in the implementation. To implement this is perhaps not a very complicated
task, however we deemed it as far too time-consuming for a research project. On
the other hand, by having full control of the whole run-time system we could omit
the Erlang–to–Erlang compilation phase discussed in section 5.2. It would also be
trivial to switch from a big-step semantics to a small-step semantics since we could
easily turn other syntactic constructions into choice points. A final drawback is
of course also that we miss the “all-in-Erlang” aspect, since we involve Haskell.
This could be a hinder for an experienced Erlang programmer with limited Haskell
knowledge.

Our conclusion is that it is certainly possible to implement the same type of
model checker in Haskell. However, it seems to be a lot more time-consuming,
and it is not obvious that the end result would be any better than McErlang.

8 Related Work

Software model checking is a very active research field, which means that there
exist an overwhelming amount of related works. We try to mention the most
important and the ones which have provided inspiration for McErlang.

For Erlang the etomcrl toolset [7] already provides a model checking capa-
bility. Although it is more restricted, covering a smaller subset of Erlang, for

9 – Conclusion and Future Work 119

instance lacking the concept of distribution and fault tolerance (i.e. nodes, pro-
cesses, links, monitors, . . .). Other verification tools for Erlang include Huch’s
abstract interpretation model checker [23] which uses abstract interpretations to
reduce the size of the state space. We also have the “Verification of Erlang
Programs”-project [18] which uses theorem proving technology. Further there is
the interesting QuickCheck tool for Erlang by Arts and Hughes [6], which how-
ever is more of a testing tool than a verification tool as it cannot detect recurring
states.

The work on tracing for Erlang, in particular the approaches that have used
abstractions to handle the size of the traces, by Arts and Fredlund [5] and by Arts
et al. [9] was also a source of inspiration for the abstraction part of the McErlang
implementation.

A lot of the inspiration for this work naturally comes from the work on the
SPIN tool by Holzmann [20] and the CADP toolset [14], as they both constitute
very capable language based platforms for the verification of software, and for
testing new verification algorithms.

The VeriSoft tool by Godefroid [19] is one of the earlier examples of providing
a verification functionality to a real, complex, programming language (such as C
or C++) instead of a simpler specification language. Another successful example
of such a verification project is the Modex tool [22] which is closely connected
to SPIN. A recent work on the verification of complex concurrent program code
is the work on model checking file system implementations by Yang et al. [33].
Another recent work is the Zing model checker by Andrews et al. [1] which aims
at checking concurrent systems.

9 Conclusion and Future Work

As we have seen, adopting an “everything-in-Erlang” approach to model checking
has certain advantages. It is easy to provide a rich specification language, and to
use the same language for formulating correctness properties as for programming
is convenient. Moreover much of the basic execution machinery can be reused
(e.g., McErlang uses the normal Erlang run-time system extensively). The result
is a model checker for Erlang, which supports all aspects of distribution and
fault tolerance. This is especially important since distributed and fault-tolerant
implementations are known to be error prone and hard to test and debug. It is
our hope that McErlang is also simple enough to use, such that it can be used by
the ordinary Erlang programmer.

With two examples we have compared McErlang with the existing etomcrl

tool set and also showed that it is indeed possible to find errors in a distributed
program using McErlang. The performance of McErlang looks promising, and the
trade-off between expressive power and efficiency seems positive. However, more
case studies are needed before we can be certain about the capacity of McErlang.

Another good property of McErlang, is the clearly separated input. We can
easily experiment with different environment constraints for a program under test.
This is particularly useful if one is only interested in part of the complete state

120 McErlang: A Model Checker for a Distributed FP Language

space, since the search space could easily be altered by changing the environment
constraints as we saw in the leader election example in section 6.2.

We have also experimented with an alternative implementation approach using
Haskell. There we concluded that although it is a possible alternative it is far
from obvious that the result would be better than McErlang.

During the development of the McErlang tool we also realized that a (dy-
namically typed) functional language offers several advantages over traditional
languages like C as a general framework for implementing formal verification
tools (e.g., quick prototyping, clean higher-order functions, separating function-
ality cleanly into modules, seamless composition of modules, and so on). Thus
we have started experimenting with the use of the McErlang tool as a general
framework for building model checkers for various target languages. Essentially
this involves provides an executable operational semantics for the target language
in question, together with the glue necessary (state parsers and unparsers, and
so on). As a small experiment we implemented a simple interpreter and model
checker for the WS-CDL web choreography language [30].

Future work The tool is far from finished, there are many things that we want
to investigate further, the following list indicates some of these areas:

• We would like to experiment with partial-order verification algorithms for
the model checker. Clearly such reductions are normally quite language spe-
cific, and it will be instructive to see whether we can express their enabling
conditions cleanly in Erlang. Moreover we can hope to benefit from the fact
that standard components are heavily used in Erlang, which should results
in more regular communication exchanges, i.e., which are more amenable
to partial order reductions.

• To use McErlang on a larger body of programs we need to support a slightly
richer Erlang fragment (e.g. the port construct for communicating with
the external world). In particular it would be interesting to have a normal
Erlang node communicate with nodes in our “modeled” Erlang environment.

• We should provide the option of changing the Erlang semantics implemented
in the tool to re-schedule processes not only when a receive statement is en-
countered, but to do so for every side-effect inducing operation (e.g. message
sends). This will result in a small-step semantics option that may detect
new program bugs.

• Since many aspects of Erlang (asynchronous message passing, rich error
detection mechanisms and process fairness) closely match standard imple-
mentation environments for distributed algorithms. Therefore, it seems
reasonable to think that McErlang can be really useful also for verification
of general distributed algorithms. The leader election algorithm example,
presented in section 6, could be seen as one example of such an algorithm.

• We would like to develop a library of useful state abstractors for Erlang to
enable this part of the tool to see wider use.

REFERENCES 121

Acknowledgement

Thanks are due to Clara Benac Earle, Juan José Sánchez Penas, Koen Claessen
and Thomas Arts.

References

[1] T. Andrews, S. Qadeer, S.K. Rajamani, J. Rehof, and Y. Xie. Zing: A
model checker for concurrent software. In Lecture Notes in Computer Science,
volume Vol. 3114, p. 484 – 487, Jan 2004.

[2] J. Armstrong. Programming Erlang – Software for a Concurrent World. The
Pragmatic Programmers,
http://books.pragprog.com/titles/jaerlang, 2007.

[3] J. Armstrong. Making reliable distributed systems in the presence of soft-
ware errors. PhD thesis, Royal Institute of Technology, Stockholm, Sweden,
December 2003.

[4] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Pro-
gramming in Erlang. Prentice-Hall, 1996.

[5] T. Arts and L. Fredlund. Trace analysis of Erlang programs. SIGPLAN
Not., 37(12), 2002. ISSN 0362-1340.

[6] T. Arts and J. Hughes. QuickCheck for Erlang. In Proceedings of the 2003
Erlang User Conference (EUC), 2003.

[7] T. Arts, C. Benac Earle, and J. J. Sánchez Penas. Translating Erlang
to mucrl. In Proceedings of the International Conference on Application of
Concurrency to System Design (ACSD2004). IEEE Computer Society Press,
June 2004.

[8] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified Erlang
program for resource locking. International Journal on Software Tools for
Technology Transfer (STTT), 5(2–3):205–220, March 2004.

[9] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of a fault-
tolerant leader election protocol in Erlang. Lecture Notes in Computer Sci-
ence, 3395:140 – 154, January 2005.

[10] S. Blau and J. Rooth. AXD 301 - a new generation ATM switching system.
Ericsson Review, 1:10–17, 1998.

[11] K. Claessen and H. Svensson. A semantics for distributed Erlang. In Pro-
ceedings of the ACM SIPGLAN 2005 Erlang Workshop, 2005.

[12] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader
election. IEEE Trans. Parallel Distrib. Syst., 8(4):424–440, 1997. ISSN 1045-
9219. doi: http://dx.doi.org/10.1109/71.588622.

122 REFERENCES

[13] Erlang 5.5/OTP R11B. The Erlang/OTP Team. URL
http://www.erlang.org/doc/doc-5.5/doc/highlights.html.

[14] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP: A protocol validation and verification toolbox. In
Proceedings of the 8th Conference on Computer-Aided Verification, volume
1102 of Lecture Notes in Computer Science, p. 437–440. Springer, 1996.

[15] L. Fredlund. A Framework for Reasoning about Erlang Code. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, 2001.

[16] L. Fredlund. Implementing WS-CDL. In Proceedings of the second Spanish
workshop on Web Technologies (JSWEB 2006). Universidade de Santiago de
Compostela, November 2006.

[17] L. Fredlund and J.J. Sánchez Penas. Model checking a VoD server using
McErlang. In In proceedings of the 2007 Eurocast conference, Feb 2007.

[18] L. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov. A
verification tool for Erlang. International Journal on Software Tools for
Technology Transfer (STTT), 4(4):405 – 420, Aug 2003.

[19] P. Godefroid. Verisoft: A tool for the automatic analysis of concurrent
reactive software. In Computer Aided Verification, p. 476–479, 1997.

[20] G. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1991.

[21] G. Holzmann, D. Peled, and M. Yannakakis. On nested depth first search.
In Proc. Second SPIN Workshop, p. 23–32. American Mathematical Society,
1996.

[22] G. J. Holzmann and M. H. Smith. An automated verification method for
distributed systems software based on model extraction. IEEE Trans. Softw.
Eng., 28(4):364–377, 2002. ISSN 0098-5589.

[23] F. Huch. Verification of Erlang programs using abstract interpretation and
model checking. In Proceedings of the 1999 ACM SIGPLAN International
Conference on Functional Programming, 1999.

[24] N. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[25] G. Singh. Leader election in the presence of link failures. In IEEE Trans-
actions on Parallel and Distributed Systems, Vol 7. IEEE computer society,
1996.

[26] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan. Chord:
A scalable Peer-To-Peer lookup service for internet applications. In Pro-
ceedings of the 2001 ACM SIGCOMM Conference, p. 149–160, 2001. URL
citeseer.ist.psu.edu/stoica01chord.html.

REFERENCES 123

[27] S. D. Stoller. Leader election in distributed systems with crash failures.
Technical Report 481, Computer Science Dept., Indiana University, May
1997. Revised July 1997.

[28] S. Torstendahl. Open telecom platform. Ericsson Review, 1, 1997.

[29] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. p. 332–344, 1986.

[30] W3C. Web Services Choreography Description Language, Version 1.0 –
W3C candidate recommendation 9 november 2005. Technical report, W3C,
November 2005.

[31] U. Wiger. Fault tolerant leader election. URL
http://www.erlang.org/.

[32] A.G. Wouters. Manual for the µCRL toolset. Technical report, CWI, Ams-
terdam, 2001.

[33] J. Yang, P. Twohey, D. Engler, and M. Musuvathi. Using model checking
to find serious file system errors. In Sixth Symposium on Operating Systems
Design and Implementation, p. 273–288. USENIX, 2004.

Paper 5

A Semi-Automatic Correctness Proof Procedure
applied to

Stoller’s Leader Election Algorithm

This document was published as Technical Report no. 2008:7 at Computer Science
and Engineering, Chalmers University of Technology, 2008.

1 – Introduction 127

A Semi-Automatic Correctness Proof Procedure

applied to

Stoller’s Leader Election Algorithm

Hans Svensson

Technical Report no. 2008:7
Chalmers University of Technology, Göteborg, Sweden

hanssv@cs.chalmers.se

Abstract

In 1997, Stoller presented a leader election algorithm for a synchronous system with
crash failures. The algorithm is an adaptation of Garcia-Molina’s Bully Algorithm

that uses failure detectors instead of explicit timeouts. Since the characteristics of
the algorithm closely resemble the Bully Algorithm Stoller does not give a formal
correctness proof. However, although the algorithms appear similar, there are
non-trivial differences. The differences make it unclear if the original proof, by
Garcia-Molina, actually carries over as indicated by Stoller. In this document
we formalize the leader election algorithm using first-order logic, and prove its
correctness with respect to the obvious safety property; it should not be possible
to elect two different leaders at the same time.

1 Introduction

This report describe our efforts to prove the correctness of a fault-tolerant leader
election protocol by Stoller [Sto97]. We have used semi-interactive theorem prov-
ing to formally verify safety properties of the protocol. Here, semi-interactive
means that we have manually constructed invariants from which we have auto-
matically generated proof obligations. The proof obligations are solved automated
theorem provers. Most proof obligations can be proved automatically; however,
a few of the generated proof obligations needed some manual (high-level) inter-
action to be provable.

In distributed systems, the task of leader election, where a fixed set of processes
has to determine a special process, the leader, is both important and complex.
Leader election algorithms are used for work co-ordination in distributed systems,
also, a leader election algorithm is often the basis for a more intricate high-level
algorithm. For leader election there is one basic safety property “there should
never be more than one leader”, and one basic liveness property “eventually there
should be a leader”. In a fault-tolerant setting, the participating processes can
crash and restart at any point in time, making the problem significantly harder.

The leader election algorithm we have verified was introduced by Stoller in
[Sto97], it is closely related to the classical leader election algorithm, The Bully
Algorithm, by Garcia-Molina [GM82]. The verification of this Bully algorithm is
part of an effort to verify an Erlang implementation of an (by us) adapted version
of the Bully algorithm. The Erlang implementation was developed by us, after
we discovered some rather subtle bugs in an earlier implementation (not based

128 A Semi-Automatic Correctness Proof Procedure . . .

on the Bully algorithm) using trace-based testing techniques [ACS05]. The new
implementation is based on Stoller’s algorithm [Sto97]; however, to fully meet the
requirements and fit into the Erlang framework we had to make some non-trivial
changes to the protocol.

From our previous experience, we knew that it is extremely hard to correctly
implement this kind of algorithms. And although the implementation withstood
thorough testing using the same techniques that uncovered the bugs in the pre-
vious version, we were not fully confident that the implementation was correct.
One reason for our doubts was that Stoller never gives a formal correctness proof
for the algorithm in his paper. Stoller’s algorithm is a slightly adapted version
of a classical leader election algorithm by Garcia-Molina, which in turn is only
informally proved correct in the original paper [GM82]. Stoller claims that his
modifications are so minor that there is no need to give a new proof: “The proofs
that the BullyFD Algorithm satisfies SLE1 and SLE2 are very similar to the proofs
of Theorems A1 and A2 in [GM82] and are therefore omitted.”

Therefore before trying to formally verify the algorithm in the implementation,
which is a bit more complicated than Stoller’s original algorithm, we decided
to verify Stoller’s algorithm. We tried several different model checking methods
(among others SPIN [Hol03] and our own model checker McErlang [FS07]). These
model checkers, although very capable, could not handle the problem except for
very small and unconvincing bounds on the number of processes, message queue
sizes, etc. This is mostly due to the extremely high number of states, which
are generated by the combination of fault-tolerance and asynchronous message
passing.

We found a method, where we prove invariants of the system inductively, that
worked well. We use first-order logic theorem provers to solve proof obligations
generated by our model of the algorithm as an abstract transition system and
the invariants. By using first-order logic we could prove properties about the sys-
tem for any number of processes, unbounded message queues and an unbounded
number of occurring faults. The first-order logic theorem provers we used were
very capable, and the level of interaction was mostly at the level of stating the
correct invariants. (However, some proof obligations also needed some manual
interaction before being provable.)

The main problem of the approach is to come up with the right invariant(s),
unfortunately this is a non-trivial task. Most of the time the invariant that one
is trying to prove is not inductively provable. Not being inductively provable
means that we have to strengthen the original set of invariants by adding new
invariants; until we have an inductively provable set of invariants. In our case we
started with the single invariant “There should never be more than one leader”
and finished off with a set of 89 invariants!

2 – Background 129

Contributions – In this document we present a formalization and formal cor-
rectness proof of the Bully Algorithm as stated by Stoller [Sto97]. The proof
methodology used should be generally applicable, and some effort has been made
in that direction. The same style of reasoning should be applicable for other dis-
tributed and fault-tolerant algorithms.

Document organization – In Sect. 2 we give some background of the fault-
tolerant leader election protocol. In Sect. 3 we describe the actual algorithm. The
proof procedure is described in more detail in Sect. 4. Sect. 5 contains a detailed
description of the model of the algorithm and the algorithm environment used
in the proof. In Sect. 6 we explain the invariant that we want to prove. Some
implementation effort was made in order to represent the algorithm and carry out
the proof steps, this is briefly presented in Sect. 7. In Sect. 8 some numbers and
examples from the proof procedure are presented together with a short summary
of the automated theorem provers used in the proof. Sect. 9 contains a short
summary. Finally, in the Appendix all the used invariants are presented together
with a listing of the axioms and a description of the logic functions and predicates.

2 Background

In 1982 Garcia-Molina published a classic paper on ’Elections in a Distributed
Computing System’ [GM82]. In that paper Garcia-Molina describes and discusses
failure environments and also presents two different leader election algorithms the
Bully Algorithm and the Invitation Algorithm. The Invitation Algorithm is speci-
fied for the more complex situation where messages can get lost and participating
processes may be arbitrarily slow; whereas the Bully Algorithm works in the less
hostile situation where only crash failures are considered. In this document we fo-
cus on the Bully Algorithm, and for many modern distributed computing systems
the required assumptions are actually fulfilled.

In 1997 Stoller presented a paper, ’Leader Election in Distributed Systems
with Crash Failure’ [Sto97]. In this paper Stoller gives a more general formulation
of the Bully Algorithm, where failure detectors are used to make the algorithm
more modular. Stoller also points at a minor flaw in Garcia-Molinas specification
for the Invitation Algorithm. Stoller claims that the modifications made to the
Bully Algorithm are minor. In fact they are so minor that no new proof is needed,
and Stoller refers to the proof in Garcia-Molina’s paper. However, the proof in
Garcia-Molina’s paper is only informal, although rather detailed, and thus it is
not an entirely convincing statement by Stoller.

In this document we formalize the Bully Algorithm by Stoller, using first-
order logic, and prove its correctness by the use of automated theorem provers.
The formalization is somewhat colored by the fact that it is part of a verification
effort for Erlang programs. Some parts of the model are actually not the most
straightforward solution, but rather the most Erlang-ish. To give an example, we
decided to implement the failure detection, which is a cleanly separated mecha-
nism in Stoller’s description, in terms of messages more akin to failure detection
in Erlang.

130 A Semi-Automatic Correctness Proof Procedure . . .

3 Algorithm

3.1 General Description – The Bully Algorithm

The algorithm presented by Garcia-Molina was named the Bully Algorithm, be-
cause in the election process nodes with a high priority force nodes with a lower
priority into accepting them as the leader. (Note, in the original paper the term
coordinator was used instead of leader. In the original algorithm there was also a
reorganization phase before normal operation was started upon electing a new
leader.) The Bully Algorithm uses node identification numbers as priorities.
Garcia-Molina assigns highest priority to high numbers while Stoller takes the
Unix approach and assigns high priority to low numbers. Since we are mostly
studying Stoller’s algorithm, from now on we assume that the lowest node iden-
tification number means the highest priority. In the following we are using the
terms node and process somewhat interchangeably, since there is never more than
one leader election process alive at the same node. However, different incarnations
of the leader election process have different process identifiers to avoid confusion
in communication.

Figure 1: Election phase 1

(a) Part 1 (b) Part 2

Figure 2: Election phase 2

To describe the algorithm, we look at the node with identification number i.
Assume that i starts an election. (There are several reason for starting a new
election; the old leader died, the process just recovered or the last election was
aborted since the candidate leader died.) The election protocol consists of two
phases. The first phase includes communication with nodes that have a higher
priority and the second phase consists of communication with nodes that have a
lower priority. In the first phase, as shown in Fig. 1, node i tries to contact all

3 – Algorithm 131

nodes with a higher priority. If any of them is alive, node i gives up its bid to
become leader and waits for communication from that node. (If node i does not
hear from this node in a while, it should again restart the election process.) If
none of the nodes with a higher priority answers, then node i continues with the
second phase of the algorithm. In the second phase, node i contacts all nodes
with a lower priority (in order) to inform them that node i intends to become the
leader. This is done in a two-step manner by first, as shown in Fig. 2(a), forcing
all nodes with a lower priority into a state where they are ready to accept the
new leader. Second, to actually become the leader, node i sends an appropriate
message to all nodes with a lower priority, as illustrated in Fig. 2(b). (To get a
better intuition on why this works one can read the informal introduction of the
algorithm in Garcia-Molinas paper [GM82].) If i itself has the highest (or the
lowest) priority, the first (or the second) phase is trivial.

3.2 Garcia-Molina’s Bully Algorithm

In Garcia-Molina’s presentation of the Bully Algorithm a RPC-like construction
with an explicit timeout is used. A typical procedure call looks like:
call proc(i,parameters) ontimeout(t): stmt.

That is, detection of failure is done by an explicit timeout, and a node simply calls
an empty procedure on another node to check if it is alive. The advantage of using
this type of communication is that the caller is blocked until either the procedure
is remotely executed or the call timeout, this asserts a high degree of sequentiality.
Sequential actions simplifies algorithm design and reasoning about the algorithm.
At the same time this is a drawback. One major point of distribution is to do
things simultaneously, for example checking that all nodes with a higher priority
are dead can be done efficiently in parallel.

3.3 Stoller’s Bully Algorithm

Stoller’s version of the Bully Algorithm is not very different from Garcia-Molina’s.
Stoller introduces modular failure detectors and the use of ordinary communica-
tion instead of RPC-calls makes his version less sequential. A failure detector is a
module that detects and reports crashes. A typical failure detector can be started
and stopped. Usually the start and stop actions are parametrized with the iden-
tifier of the process that should be monitored. When a process monitored by a
failure detector crashes a notification of the crash is sent to the process initiating
the failure detection. By using failure detectors it is possible to perform phase
one of the election (checking that all nodes with a higher priority are dead) in
parallel. In Stoller’s Bully Algorithm a failure detector is initiated for each node
with a higher priority, and the crash notifications are collected in the order they
arrive. Each process participating in the election protocol has a few state vari-
ables, described in Tab. 1. More details of Stoller’s Bully Algorithm are discussed
in Sect. 5 where our model of the algorithm is described.

132 A Semi-Automatic Correctness Proof Procedure . . .

pid The process identifier.
status The election status, one of: elec 1 – the first phase of the election,

elec 2 – the second phase of the election, wait – the status for a
process that has given up its bid for the leader role, and norm –
the status for all stable processes (both the leader and the ones
recognizing the leader have status norm when the election is over).

ldr The host identifier of the leader; this variable only has a valid
content when a process has status norm.

elid The election identifier; used by the process to keep track of who
is its leader candidate.

down The set of processes known to be dead.
acks The set containing the processes from which an Ack-message has

been received.
pendack The counter used to keep track of where in the first part of the

second phase the process is. (I.e., who is the process waiting for
an Ack-message from.)

Table 1: State variables in Stoller’s Bully Algorithm

4 Proof Procedure

The proof procedure used in the verification needs three components, which de-
scribe the verified system and the invariants:

• A predicate Init describing the initial state,

• A predicate Inv describing the invariant,

• A predicate transformer [Sys] that abstractly describes one transition of
the system.

For the predicate transformers, we borrow notation also used in dynamic logic
[BHS07] and the B-method [Abr96, Wor96]. For a program S and a post-condition
Q, we write [S]Q to be the weakest pre-condition for S that establishes Q as a
post-condition. This in turn means that we can write

P → [S]Q

which has the same meaning as the Hoare triple {P}S{Q} [Hoa69].

The language we use to describe Sys is very simple. The three most impor-
tant constructs are assignments, conditionals, and non-deterministic choice. The
definition of predicate transformers we use is completely standard, and we will
only briefly discuss the concepts here. For more details, the reader can consult
[Abr96]. Here are the definitions of the predicate transformers for assignments,

4 – Proof Procedure 133

conditionals, and non-deterministic choice, respectively.

[x := e] P = P{e/x}

[ifQ then S else T] P = (Q→ [S]P) ∧ (¬Q→ [T]P)

[S | T] P = [S]P ∧ [T]P

Establishing Inv as an invariant amounts to proving the following two statements:

Init → Inv

Inv → [Sys] Inv

In practice, Inv is really a conjunction of a number of smaller invariants:

Init → Inv1 ∧ Inv2 . . . ∧ Invn

Inv1 ∧ Inv2 . . . ∧ Invn → [Sys] (Inv1 ∧ Inv2 . . . ∧ Invn)

The above two proof obligations are split up into several sub-obligations; for the
initial states, we prove, for all i, several obligations of the form:

Init→ Invi

For the transitions, we prove, for all i, several obligations of the form:





∧

j∈Pi

Invj



 → [Sys] Invi

That is, for each invariant conjunct Invi, we have a subset of the invariants Pi

that we use as a pre-condition for establishing Invi. Logically, we can use all
invariants Invj as pre-condition, but in practice the resulting proof obligations
would become too large to be manageable by the theorem provers we use. Also,
it is good to ”localize” dependencies, so that when the set of invariants changes,
we only have to redo the proofs for the obligations that involves the invariants
we changed.

To simplify the proof obligations as much as possible, we also use an aggressive
case-splitting strategy. Thus each of the above proof obligations is proved in many
small steps. The case-splitting is fully automatic and further discussed in Sect. 8.

4.1 Sanity Checks

The complete proof is very complex and consists of quite a few generated and
hand-written first-order logic formulas. Therefore, there are many ways in which
the reasoning could be compromised. For example by introducing a bad axiom
which makes everything provable, or by having a too abstract model which accepts
also incorrect algorithms. Therefore it is good to do as many sanity checks as
possible, here we mention two strategies for doing sanity checks.

134 A Semi-Automatic Correctness Proof Procedure . . .

Breaking the Algorithm

By deliberately breaking the algorithm we should see that we no longer are able
to prove all of the invariants. There are many ways in which the algorithm could
be broken. However, we did not do any systematic experiments but rather did
a few ad hoc changes to the algorithm which all resulted in one or more failing
proof attempts. These experiments should for example reveal if the axioms are
inconsistent.

Removing Invariants

Another way to test the robustness of the proof is to deliberately remove needed
sub-invariants from the set of invariants in the antecedent. Since these sets are
not necessarily minimal we should not expect this test to render all problems
unprovable.

5 Model

In our formalization of Stoller’s version of the Bully Algorithm, we do not use
a separate failure detection module as in Stoller’s presentation. For simplicity,
and more like in Erlang, we instead over-approximate the failure detection by
actually informing every alive process about every failure via messages. The
over-approximation could be a potential problem, but the algorithm is designed
robustly with regard to getting too many failure reports. The algorithm code is
shown in Fig. 4, 5 and 6. The algorithm is presented in a reactive way, the On Msg

construction is what is executed when a process receives Msg. Also Periodically,
Crash, Recoverymeans exactly that, i.e. the code snippet is executed periodically,
on process crash and on recovery respectively. (Note that only processes that are
alive execute code periodically. A crashed process can only execute the recovery
code.) In Fig. 3 we show a simplified overview of the state space of the model.
Note, in reality there is no explicit dead-state, although there is one in the figure
to make it more readable.

Each reactive sub-part of the program corresponds to a predicate transformer
[Sys] as seen in the previous section. Below we list the most important aspects
of the model in no particular order.

• Each node has a separate message queue, the message queue is emptied on
recovery of a process. (This is done implicitly by the framework and is not
visible in the algorithm code.) This means that it is possible for a process
to receive messages intended for another process (if another process sends
a message to a predecessor of a process, since only the host is used as the
’address’), but it will not inherit messages from its predecessor. The queue
model is further discussed in Sect. 5.3.

• Messages are received in a FIFO-manner. I.e., there is no such thing as
pattern matching on messages in the message queue, which is often used
in Erlang. Note, this is a property of the algorithm, and the full Erlang
message handling would require a more complicated model.

5 – Model 135

Figure 3: State space overview

• State vectors are kept orthogonally to the set of processes. Instead of hav-
ing one state vector for each process, we have a set of state arrays in-
dexed by host id in which the state is stored. (acks, downs, status,

pendacks, elids, ldrs and queues) are the state arrays. For example
Acks[host(Pid)], returns the set of acknowledged processes for Pid. The
queues-array is not used explicitly by the algorithm, instead we use a more
general send (!) operator. The state arrays and their types are listed in Fig.
4. The state arrays correspond to the variables listed in Tab. 1; except for
Pid, which is instead a local variable. I.e., each process has a Pid-variable,
where its process identifier is stored. The Pid variable is frequently used to
index the state arrays.

• The send operator (!) is overloaded. The left-hand side can either be a host
identifier or a set of host identifiers. In the second case a message is sent to
every member of the set.

• In order to reason about the global state we also have two global sets;
alive which contains all alive process identifiers, and pids which contains all
processes that have ever communicated with another process.

• All state variables are expressed as either global sets, or as an index in a state

136 A Semi-Automatic Correctness Proof Procedure . . .

array. Using some rewriting, both the sets and the arrays and their updates
can be expressed in terms of two simple predicates (setIn and index) and
ordinary logic symbols.

• The distinction between process identifiers and node identifiers is necessary.
We need to be able to distinguish between different incarnations of a process
on a particular node. Each incarnation will have the same node identifier,
but a unique process identifier.

• The operators ⊕= and ⊖= are set addition and removal. For example,
Set ⊕= Elem is equivalent to Set := Set ∪ {Elem}.

• The On NormQ and On NotNorm parts of the model are not needed for the
safety property we are trying to prove. (But are essential for the liveness
properties of the algorithm.) They are part of the protocol to allow for
processes that have missed the election to start another election, where
they are included.

5.1 The Initial State

We also need to express what the initial state of the system is. The natural way
to express the initial state is to say that no processes are alive at that time and
that all sets, message queues, etc. are empty. A first-order logic formulation of
this is:
∀Pid.(
((Pid /∈ pids)
∧ (Pid /∈ alive)
∧ (queues(host(Pid)) = q nil)
∧ (ldrs[host(Pid)] = zero)
∧ (elids[host(Pid)] = nil)
∧ (pendacks[host(Pid)] = zero)
∧ (acks[host(Pid)] = setEmpty)
∧ (downs[host(Pid)] = setEmpty)
∧ (status[host(Pid)] = elec 1))

)

5.2 Axiomatization

To represent some aspects of the model in a comprehensible way we have used
axiomatizations for natural numbers, message queues, arrays and sets. In the
following sections we give some short description of the axiomatizations and ex-
planation for choices we have made.

Host Identifiers

Host identifiers (the result of applying the host()-function to process identifiers)
could be seen as (a restricted kind of) natural numbers. Host identifiers are

5 – Model 137

local (pid) Pid
state array (set host) Acks, Downs
state array (host) Pendacks, Ldrs
state array (status) Status
state array (pid) Elids
global (set pid) Pids, Alive

On recovery :
StartStage1()

On Halt<T : pid>:
Downs[host(Pid)] ⊖= host(T)
Elids[host(Pid)] := T
Status[host(Pid)] := wait
Pids ⊕= Pid
host(T) ! Ack<T,Pid>

On Ack<T : pid,J : pid>:
if (Status[host(Pid)]=elec 2 ∧ Elids[host(Pid)]=T ∧

host(J)=Pendacks[host(Pid)]) then

Acks[host(Pid)] ⊕= host(J)
ContinueStage2()

fi

On Down<T : pid>:
if host(T)< host(Pid) then
Downs[host(Pid)] := Downs[host(Pid)] ∪ {host(T)}
if (Status[host(Pid)]=norm ∧ Ldrs[host(Pid)]=host(T)) ∨

(Status[host(Pid)]=wait ∧ host(T)=host(Elids[host(Pid)])) then

Alive ⊖= Pid
StartStage1()

else

if (Status[host(Pid)]=elec 1 ∧ lesser(host(Pid)) ⊆ Downs[host(Pid)]) then

StartStage2()
fi

fi

else

if (Status[host(Pid)]=elec 2 ∧ host(T)=Pendacks[host(Pid)]) then
Downs[host(Pid)] ⊕= host(T)
ContinueStage2()

fi

fi

Figure 4: Crashing process – Stoller part 1 of 3

ordered (all comparisons are made using a less than or equal (≤) predicate) and
it is possible to take the successor of a host identifier to yield the next host. The
axioms for ≤ are listed in Appendix A.4.4.

138 A Semi-Automatic Correctness Proof Procedure . . .

On Ldr<T : pid>:
if (Status[host(Pid)]=wait ∧ Elids[host(Pid)]=T) then

Ldrs[host(Pid)] := host(T)
Status[host(Pid)] := norm

fi

On NormQ<T : pid>:
if Status[host(Pid)]6= norm then

host(T) ! NotNorm<T>
fi

On NotNorm<T : pid>:
if (Status[host(Pid)]=norm∧Ldrs[host(Pid)]=host(Pid)∧

Elids[host(Pid)]=T) then

Alive ⊖= Pid
StartStage1()

fi

Periodically :
if (Status[host(Pid)]=norm ∧ Ldrs[host(Pid)]=host(Pid)) then
greater(host(Pid)) ! NormQ<Elids[host(Pid)]>

fi

On crash :
Alive ⊖= Pid
Pids ⊕= Pid
Alive ! Down<Pid>

Figure 5: Crashing process – Stoller part 2 of 3

Sets and Arrays

Most of the state variables are stored in arrays, and the algorithm uses a number
of sets to store state data. As mentioned earlier, by using rewriting, the sets and
the arrays and their updates can be expressed in terms of two simple predicates
(setIn and index) plus ordinary logic symbols. Therefore, the set of axioms for
sets and arrays are very limited. In fact, the only axiom is one stating that the
empty set has no elements.

Message Queues

Message queues are in effect only a list of messages. However, in the algorithm we
manipulate the queue at both ends. Therefore we decided to use an aximatization
including both cons and snoc. That is, we can easily access both the first and the
last element of the queue. We also have a simple way to describe that a particular
element is at the head of the queue: Queue = cons(Elem,Queue′), and addition of
a new element at the end of a queue: Queue′ = snoc(Queue,Elem). The axioms
for message queues are found in Appendix A.4.3. There are also axioms that
define the twice predicate; a predicate that is true when a particular message is

5 – Model 139

Procedure StartStage1 :
Pid := newPid()
Alive ⊕= Pid
Elids[host(Pid)] := Pid
Status[host(Pid)] := elec 1
Downs[host(Pid)] := ∅
if host(Pid)=1 then

StartStage2()
fi

Procedure StartStage2 :
Status[host(Pid)] := elec 2
Acks[host(Pid)] := ∅
Pendacks[host(Pid)] := host(Pid)
ContinueStage2()

Procedure ContinueStage2 :
if Pendacks[host(Pid)]< nbr proc then

Pendacks[host(Pid)] := Pendacks[host(Pid)] + 1
Pids ⊕= Pid
Pendacks[host(Pid)] ! Halt<Pid>

else

Ldrs[host(Pid)] := host(Pid)
Status[host(Pid)] := norm
Acks[host(Pid)] ! Ldr<Pid>

fi

Figure 6: Crashing process – Stoller part 3 of 3

repeated in a message queue. These axioms are presented in Appendix A.4.6.

Problem Specific Axioms

There are also quite a few problem specific axioms that are needed. Most of them
express (non-)equality properties, one such example is: ∀X,Y.(m Down(X) 6=
m Ldr(Y)), which says that a Down-message is never equal to a Ldr-message.
These axioms are presented in Appendix A.4.1.

There are also axioms that define the ordered predicate. ordered(Queue) is
true exactly when the messages in Queue are ordered with respect to the process
identifiers that the messages contains. For this algorithm it is necessary to con-
sider the order between Halt-, Ack-, Ldr- and Down-messages. The axioms are
presented in Appendix A.4.3.

5.3 Message Queue Model

In earlier work, we have seen that the model for message passing is vital for the
ability to discover errors in the algorithm (or implementation) [ACS05]. The dif-
ference between the message queue models lies in how messages are delivered. In
the simpler model, used in several different projects [FGN+03, ABS04], messages

140 A Semi-Automatic Correctness Proof Procedure . . .

are delivered in exactly the order in which they are sent. This simplification is
true (in an Erlang system) as long as all involved processes are run in a single
run-time system, but not in the general distributed case. The effect of this is
that possible re-orderings of messages are missed. In the paper ’A more accurate
semantics for distributed Erlang’ [SF07] a detailed description of the differences
is presented.

In this work we have, in order to keep the proof reasonably simple, chosen not
to use the more complex view of message passing. It should be rather straight-
forward to take the message re-ordering into account in a first-order logic model.
(For example, we could use a model with a message queue for each pair of com-
municating processes.) However, it is unclear how much more complicated the
proof would get.

We have made another simplification in order to keep the proof at a reasonable
level of atomicity. Each code block (On recovery, OnMsg, etc.) is an atomic block.
This might seems strange at first, but each block contains only one visible action.
(Visible actions in this setting means exactly message(s) being sent.) Therefore,
to an outside observer (the other processes) either the whole block is executed
or not, and there is no need for smaller atomic blocks. In two places the atomic
blocks are an oversimplification; namely in the else-branch of On Ack and in On

NotNorm, where messages are sent to each node in a set. A more accurate model
should allow for the process to crash in the middle of this operation. (Note, in
On Crash messages are also sent to a set of processes, but here atomicity is not
an issue. This is the way we model failure detectors.)

It remains future work to prove the safety property also for models with the
details discussed in this section included.

6 The Main Invariant

We want to establish the critical safety property “There is never more than one
leader” for the leader election algorithm. To prove this we formulated the follow-
ing invariant for the system:
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldrs[host(Pid)] = host(Pid))
∧ (status[host(Pid2)] = norm)
∧ (ldrs[host(Pid2)] = host(Pid2)))
→ (Pid = Pid2)

)
)
The invariant basically reads: whenever two different processes (Pid and Pid2)
both consider themselves as the leader (that is, they are alive, in state norm and
have themselves as the ldr) Pid is exactly equal to Pid2.

Unfortunately, this invariant is too weak to be inductively provable. If we
look at the proof procedure, the invariant obviously holds in the initial state. In

7 – Implementation 141

the initial state no processes are alive and thus the antecedent of the invariant is
trivially false. However, the step-case does not hold. It is not hard to see that
we can construct a system state from which a step takes the system into a state
where the invariant does not hold. Nevertheless, this state is non-reachable and
it is up to us to strengthen the invariant to prove this. In total 88 additional
invariants are needed to prove the main invariant, where some invariants specify
more general properties about the system and other invariants prevent only a
very specific system situation. All 89 invariants are presented together with a
small explanation in the Appendix.

7 Implementation

All implementation work has been made in Haskell [HHJW07]. We have imple-
mented an embedded language in which crashing processes can be expressed. We
have also implemented a rewrite-system that applies a predicate transformer [Sys]
to a first-order logic formula (representing an invariant). The rewrite-system is
used in the system transition step described in Sect. 4. Some of the generated
proof obligations are not solvable by the automated theorem provers without
manual interaction. We have implemented some primitives to make this manual
first-order logic formula interaction easier.

7.1 Embedded Language for Algorithm

We have implemented an embedded language in Haskell that is suitable for de-
scribing algorithms including crashing participants. Since the goal of the work
was not this language in particular, some support is missing and the instruction
set is very targeted for this particular application. As an example there is no
parser, meaning that all code is written directly as a large data type expression.
However, there is a pretty printer, and the code in Fig. 4, 5 and 6 is mostly ma-
chine generated. The language is fairly simple, reflecting the requirements by the
proof procedure; the main constructions are if-then-else, assignment, and various
set- and array-operations.

7.2 The []-Operator

The implementation of the predicate transformer (the []-operator) is straightfor-
ward. For each program construction there is a direct mapping to its consequences
for a logic formula as described in Sect. 4.

7.3 Proof Tactics

Some of the generated first-order logic problems can not be solved in a reasonable
time (< 3 minutes). This does not necessarily mean that the problems are par-
ticularly hard. It could just as well be that their structure is non-optimal for the
theorem prover. One example of such a non-optimal structure is the originally
not very complex expression from the algorithm:

142 A Semi-Automatic Correctness Proof Procedure . . .

lesser(host(Pid)) ⊆ (downs[host(Pid)] ∪{host(Pid2)})
The expression means that the process (Pid) has (with the addition of host(Pid2))
received a Down-message from all process in its lesser-set (all processes with a
higher priority). This is processed by the Set-simplification into a rather complex
expression:
∀V.(
(((s(zero) ≤ V) ∧ (host(Pid) > V))

→ ((V ∈ downs[host(Pid)])
∨ (V = host(Pid2)))

)
)
The problem is that the theorem prover does not assign a special meaning to this
structure. It simply treats the structure as a composed formula, not as a single
unit. Given the problem structure where the invariants are present both in the
antecedent and the consequent, it is often crucial to the proof that one instance
of this structure could be matched with another. Therefore, one whole class of
problems becomes significantly easier (for an automated theorem prover) if the
complex expression above is substituted for the term:
∀V. lesserIsSubsetOfDown(V, P id, P id2).
Another set of hard to solve logic problems can be helped by giving a hint to

the theorem prover. We have done this by specifying a particular case-split to be
used.

We have implemented a set of operations on logic formulas, including the
substitution indicated above and a safe case-split. The case-split is implemented
in such a way that it is first proved that the cases are total before the case-split
is used. I.e., given the problem A→ B and the case-split C1 ∨C2, we first prove
that A→ (C1 ∨C2) before trying to prove both A ∧C1 → B and A ∧C2 −→ B.
It is non-trivial to find out which case-splits to try, but with some experience it
becomes easier.

8 Proof

In this section we present some data from the proof procedure, and we also show
an example of a proof obligation.

8.1 Statistics

The algorithm as presented in Fig. 4, 5 and 6, consists of 9 sections (six different
On msg, On crash, On recovery and Periodically). In order to prove it
correct, we have used 89 invariants. For each invariant, each of the nine program
sections have been applied, generating a number of logic problems (the number
depends on the program and the invariant structure). In total, after performing
as much case-splitting as possible (A −→ (B1 ∧ B2) is split into A −→ B1 and
A −→ B2), there are 13563 first-order logic problems that should be solved.

13510 of the problems are solved by running a selection of automated theorem
provers (described below) with carefully planned timeouts. Solving these 13510

8 – Proof 143

problems require no user interaction, and takes around 5 hours. (5h09m on a
fairly modest, P4 2.4GHz, workstation with 1GB of RAM.)

8.2 Tactics

To solve the remaining 53 problems we need to apply some proof tactics as de-
scribed above. Approximately 40 of these problems are trivially solved by ap-
plying the rewrite described in section 7.3 where a complicated set-expression is
rewritten to a single representative function.

The other problems are solved by specifying more or less complicated case-
splits and hints. One specific example of such a case-split defined in Haskell is
shown in Fig. 7. The cases are defined for a particular host (host(X)) where
host(X) is either in a particular set, equal to another host or larger than this
other host.

tac_inv40_subprob114 =

do fsf <- mapM parseFOF

["setIn(host(X),index(downs,host(V2)))",

"host(X) = host(V3)",

"leq(host(V3),host(X))"]

return (CaseSplit fsf)

Figure 7: case-split example

8.3 Theorem Provers

In the verification we have used four different automated theorem provers: E-
prover, Vampire, SPASS and Equinox. They have different reasoning frameworks
as well as different strategies implemented. Thus they work well on different
categories of problems, and most problems are quickly provable by at least one of
the theorem provers. A comparison of the theorem provers is presented in Fig. 8
and 9. In Fig. 8 the number of instances solved with a timeout of 600 seconds
is presented and in Fig. 9 the total number of solved problems for each theorem
prover is presented for two different timeouts (100 s and 600 s).

E-prover

E-prover [Ep] is based on the equational superposition calculus. E-prover, in
contrast to many other provers, implements a purely equational paradigm and
simulates non-equational inferences via appropriate equality inferences. E-prover
has shared term rewriting (where many possible equational simplifications are
carried out in a single operation), several efficient term indexing data structures
for speeding up inferences and advanced inference literal selection strategies. E-
prover is one of the stronger existing theorem provers and its automatic strategy
usually performs rather well.

144 A Semi-Automatic Correctness Proof Procedure . . .

 10000

 10500

 11000

 11500

 12000

 12500

 13000

 13500

 0.1 1 10 100

N
um

be
r

of
 p

ro
bl

em
s

Time (s)

Comparing Vampire, Eprover, Spass and Equinox (Timeout 600 s)

Best mix
Vampire

Spass
Eprover
Equinox

Figure 8: Comparing theorem provers, timeout 600 s.

Vampire

Vampire [Vam] is an automatic theorem prover for first-order classical logic devel-
oped by Prof. Andrei Voronkov previously together with Dr. Alexandre Riazanov.
Vampire has a fast kernel, implementing a calculus of ordered binary resolution
which uses superposition to handle equality. Vampire implements a wide selection
of simplification and redundancy removal techniques such as subsumption, tau-
tology deletion, rewriting, etc. Vampire has won the CASC [SS06] competition no
less than seven times, and is considered the strongest general purpose automated
theorem prover.

SPASS

SPASS [SPA] is a saturation-based automated theorem prover for first-order logic
with equality. SPASS features a combination of the superposition calculus with
specific inference/reduction rules for sorts (types). While not being as strong as
Vampire, there are quite a few invariants where SPASS is performing well.

Equinox

Equinox [Equ] is an experimental new theorem prover for pure first-order logic
with equality. The strategy of Equinox is to find ground proofs of the input
theory, this is done by solving successive ground instantiations of the theory

8 – Proof 145

0

5000

10000

11000

12000

13000

Max 13563

Equinox Eprover Spass Vampire Best mix

S
ol

ve
d

pr
ob

le
m

s

Theorem prover

13549
13496

13482
13391

13360
13288

13241
13144

11473
11473

Timeout 100s.
Timeout 600s.

Figure 9: Comparing theorem provers, total number of solved problems

using an incremental SAT-solver. Equinox is not a very strong theorem prover
in general, but there are problems solved by Equinox that are very hard for the
other theorem provers.

8.4 Proof Example

To further explain the proof procedure we also present a concrete example. Here
we have the main invariant (also presented in Sect. 6):
∀Pid2,Pid.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldrs[host(Pid)] = host(Pid))
∧ (status[host(Pid2)] = norm)
∧ (ldrs[host(Pid2)] = host(Pid2)))
→ (Pid = Pid2)

)
)
If we apply the system On Ldr<T> (See Fig. 5) to the invariant using the im-
plementation of the []-operator, we end up (after case-splitting, described below)
with the following formula:

146 A Semi-Automatic Correctness Proof Procedure . . .

∀X,W,V.(
((queues(host(X)) = cons(m Ldr(T),V))

→ ((X ∈ alive)
→ (((elids[host(X)] = T)

∧ (status[host(X)] = wait))
→ ∀Pid, Pid2.(

((host(X) = host(Pid))
∧ (host(X) 6= host(Pid2)))
→ (((Pid ∈ alive)

∧ Pid2 ∈ alive

∧ host(T) = host(Pid)
∧ ldrs[host(Pid2)] = host(Pid2)
∧ status[host(Pid2)] = norm)
→ (Pid = Pid2)

)
)

)
)

)
)

)
)
This is not the complete resulting problem, since some case splitting has taken
place, namely on the if-statement which is true here and also on host(X) =
host(Pid) and host(X) 6= host(Pid2). We see that some substitutions have been
made, for example ldrs[host(Pid)] = host(Pid) has been replaced by host(T) =
host(Pid). We can also see that the sub-expression status[host(Pid)] = norm is
completely missing. This is because status[host(Pid)] has been substituted for
norm and norm = norm has been simplified away.

8.5 Proof Procedure Summary

Most of what is described in this report is automatic. To summarize the manual
work, the following five components is the necessary input:

• The initial state of the system

• The invariant(s)

• The description of the system transitions

• The invariant subsets (named Pi in Sect. 4)

• Manual case-splitting or other manual interaction might be needed for some
(hard) proof obligations

It is a repetitive process to come up with the necessary invariants as well as
the invariant subsets, while the initial state and the transitions of the system

9 – Conclusions 147

is not as volatile. Given these five components, proof obligations are automati-
cally generated. The generated proof obligations are automatically case-split, and
some re-writing (mainly for sets and arrays) is performed. The resulting proof
obligations are given to the automated theorem provers described in Sect. 8.3.

For some of the proof obligations the theorem provers are not powerful enough,
and further manual interaction is necessary as described in Sect. 7.3.

9 Conclusions

In this document we have presented a formalization and a proof of correctness
for the Bully Algorithm (as presented by Stoller [Sto97]). By doing this we have
confirmed that the informal reasoning by Garcia-Molina [GM82], actually carries
over (at least as far as the conclusion that the algorithm is correct) to (our
model of) Stoller’s formulation of the algorithm. Our model accurately describes
Stoller’s version of the Bully Algorithm. However, it remains future work to
improve the model further; for example, to also include the more accurate message
queue model and improve the modeling of messages sent to a set of recievers.

We have also described a proof procedure that hopefully can be more generally
applicable than for just this proof. The proposed way to model communicating
processes and the proposed axiomatizations could certainly be useful in correct-
ness proofs for other distributed and fault-tolerant algorithms.

References

[Abr96] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cam-
bridge University Press, 1996.

[ABS04] T. Arts, C. Benac Earle, and J.J. Sánchez Penas. Translating Erlang
to mCRL. In Fourth International Conference on Application of Con-
currency to System Design, p. 135–144, Hamilton (Ontario), Canada,
June 2004. IEEE Computer Society.

[ACS05] Thomas Arts, Koen Claessen, and Hans Svensson. Semi-formal de-
velopment of a fault-tolerant leader election protocol in Erlang. In
Lecture Notes in Computer Science, vol. Vol. 3395, p. 140 – 154, Feb
2005.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt. Verifica-
tion of Object-Oriented Software: The KeY Approach. LNCS 4334.
Springer-Verlag, 2007.

[Ep] E-prover. http://www.eprover.org.

[Equ] Equinox. http://www.cs.chalmers.se/˜koen/folkung/.

148 REFERENCES

[FGN+03] Lars-Åke Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas
Arts, and Gennady Chugunov. A verification tool for Erlang. Inter-
national Journal on Software Tools for Technology Transfer (STTT),
4(4):405–420, August 2003.

[FS07] L-Å. Fredlund and H. Svensson. McErlang: A model checker for a dis-
tributed function al programming language. In Proc. of International
Conference on Functional Programming (ICFP). ACM SIGPLAN,
2007.

[GM82] Hector Garcia-Molina. Elections in a distributed computing system.
IEEE Transactions on Computers, C-31(1):48–59, January 1982.

[HHJW07] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip Wadler.
A history of Haskell: being lazy with class. In The Third ACM SIG-
PLAN History of Programming Languages Conference (HOPL-III),
San Diego, California, June 2007.

[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Com-
mun. ACM, 12(10):576–580, 1969.

[Hol03] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, September 2003. ISBN: 0-321-22862-6.

[SF07] Hans Svensson and Lars-Åke Fredlund. A more accurate semantics for
distributed Erlang. In Erlang ’07: Proceedings of the 2007 SIGPLAN
workshop on Erlang Workshop, p. 43–54, New York, NY, USA, 2007.
ACM.

[SPA] SPASS. http://spass.mpi-sb.mpg.de/index.html.

[SS06] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications,
19(1):35–48, 2006.

[Sto97] S.D. Stoller. Leader election in distributed systems with crash failures.
Technical Report 481, Computer Science Dept., Indiana University,
May 1997. Revised July 1997.

[Vam] Vampire. http://www.vampire.fm.

[Wor96] J.B. Wordsworth. Software Engineering with B. Addison-Wesley,
1996.

Paper 6

Finding Counter Examples in Induction Proofs

This paper was written together with Koen Claessen. It was published at ’The
Second International Conference on Tests and Proofs’ (TAP), in Prato, Italy,
April 2008. The paper included here has a few minor corrections and is also
typeset in a slightly different style.

1 – Introduction 151

Finding Counter Examples in Induction Proofs

Koen Claessen1 , and Hans Svensson1

1 Chalmers University of Technology, Göteborg, Sweden
{koen,hanssv}@cs.chalmers.se

Abstract

This paper addresses a problem arising in automated proof of invariants of tran-
sition systems, for example transition systems modelling distributed programs.
Most of the time, the actual properties we want to prove are too weak to hold in-
ductively, and auxiliary invariants need to be introduced. The problem is how to
find these extra invariants. We propose a method where we find minimal counter

examples to candidate invariants by means of automated random testing tech-
niques. These counter examples can be inspected by a human user, and used to
adapt the set of invariants at hand. We are able to find two different kinds of
counter examples, either indicating (1) that the used invariants are too strong (a
concrete trace of the system violates at least one of the invariants), or (2) that the
used invariants are too weak (a concrete transition of the system does not main-
tain all invariants). We have developed and evaluated our method in the context
of formally verifying an industrial-strength implementation of a fault-tolerant dis-
tributed leader election protocol.

1 Introduction

This paper gives a partial report on our experiences on using (semi-)automated
theorem proving to formally verify safety properties of an industrial-strength im-
plementation of a fault-tolerant leader election protocol in the programming lan-
guage Erlang [19].

Leader election is a basic technique in distributed systems; a fixed set of
processes has to determine a special process, the leader, among them. There is
one basic safety property of such algorithms (”there should never be more than
one leader”), and one basic liveness property (”eventually there should be one
leader”). In fault-tolerant leader election, processes can die and be restarted at
any point in time (during or after the election), making the problem immensely
tricky.

Erlang is a language for distributed programming originally developed for
implementing telecommunication systems at Ericson [3, 2]. A key feature of the
systems for which Erlang was primarily designed is fault-tolerance; Erlang has
therefore built-in support for handling failing processes.

The implementation of the leader election algorithm we verified was developed
by us, after we had uncovered some subtle bugs in an earlier existing implemen-
tation using testing techniques [4]. Our new implementation is based on an adap-
tation of a standard fault-tolerant leader election algorithm by Stoller [18] and is
now a standard library in Erlang. In our implementation, we had to make some
changes to Stoller’s original algorithm because of the way processes communicate
in Erlang (via asynchronous message passing over unbounded channels) and the

152 Finding Counter Examples in Induction Proofs

way fault-tolerance is handled in Erlang (a process can monitor another process,
in which case it receives a special message when the other process dies).

From our previous experience, we knew that it is extremely hard to get these
kinds of algorithms right. Indeed, we started by extensively testing the new im-
plementation using our testing techniques [4], leading to our increased confidence
in the correctness of the implementation. However, we had some reasons to be
cautious. Firstly, our implementation was based on an adaptation of Stoller’s
original algorithm, so even if Stoller’s algorithm were correct, our adaptation of
it might not be. Secondly, Stoller never gives a formal proof of correctness in his
paper [18]. His algorithm is in turn an adaptation of a classical leader election
algorithm (called ”The Bully Algorithm”) by Garcia-Molina, which in turn only
has been proven correct in the paper in a very informal way [12]. Stoller claims
that his modifications are so minor that giving a new proof is not needed: “The
proofs that the BullyFD Algorithm satisfies SLE1 and SLE2 are very similar to
the proofs of Theorems A1 and A2 in [GM82] and are therefore omitted.”

When we decided to formally verify our implementation, we first tried a num-
ber of different model checking methods (among others SPIN [13] and our own
model checker McErlang [11]). Unfortunately, these could only be used for ex-
tremely small and unconvincing bounds on the number of processes, sizes of mes-
sage queues, and number of times processes can die. This is partially due to the
huge state space generated by the combination of asynchronous message passing
and fault-tolerance.

The alternative we eventually settled on was to prove invariants of the sys-
tem inductively by means of automated first-order logic theorem proving. Here,
we model the implementation as an abstract transition system, and express the
properties we want to prove as invariants on the states of the transition system.
The reasons we chose this approach were (1) using first-order logic allowed us to
prove the implementation correct for any number of processes, using unbounded
message queues and an unbounded number of occurring faults, and (2) automated
first-order theorem provers are relatively autonomous, in principle only requiring
us to interact with the verification process at the level of choosing the invariants.

The main obstacle in this approach is that, most often, the (relatively small)
set of invariants one is interested in establishing is not inductively provable. This
means that the original set of invariants has to be strengthened by changing
some of the invariants or by augmenting the set with new invariants, until the
set is strong enough to be inductive. Very often, this is a non-trivial and labour-
intensive task. In our case, we started with one invariant (”there should not be
more than one leader”) and we ended up with a set of 89 invariants. This is the
sense in which we call our method semi-automated; if the right set of invariants
is picked (manually), the proof is carried out automatically. Thus, the user of
the method does not have to carry out proofs, but only has to formulate proof
obligations.

The task of finding the right set of invariants is not only non-trivial, but can
also be highly frustrating. The reason is that it is very easy for a user, in an
attempt to make the set of invariants stronger, to add properties to the set which
are in fact not invariants. When certain invariants can not be proven, the first-

1 – Introduction 153

order theorem provers we use do not in general provide any reason as to why this
is the case, leaving the user in the dark about what needs to be done in order to
get the proof through.

We identified 4 different reasons for why a failed proof of a given invariant
occurs: (1) the invariant is invalid, i.e. there exists a path from the initial state to
a state where the invariant is falsified, (2) the invariant is valid, but too weak, i.e.
it indeed holds in all reachable states, but it is not maintained by the transition
relation, (3) the invariant is valid and is maintained by the transition relation,
but the current axiomatization of the background theories is too weak, and (4)
the invariant is valid and should be provable, but the theorem prover at hand
does not have enough resources to do so.

The remedies for being in each of these cases are very different: For (1), one
would have to weaken the invariant at hand; for (2) one would have to strengthen
it; for (3) one would have to come up with extra axioms or induction principles;
for (4) one would have to wait longer or break the problem up into smaller bits.

Having a concrete counter example to a proof attempt would show the dif-
ference between cases (1), (2) and (3). Thus, having a way of finding counter
examples would greatly increase the productivity of the proposed verification
method. Providing counter models to first-order formulas (or to formulas in more
complex logics) is however an undecidable problem.

We have developed two novel methods, based on random property-based test-
ing using the automated testing tool QuickCheck [9], that, by automatically re-
using the invariants as test generators and test oracles, can automatically and
effectively find counter examples of categories (1) and (2). Finding counter ex-
amples of category (3) remains future work.

Establishing inductive invariants is a very common method for verifying soft-
ware (in particular in object-oriented programs, see for example [5, 21]). We be-
lieve that the methods for finding counter examples in this paper can be adapted
to other situations than verifying distributed algorithms.

The contributions of this paper are:

• A classification of different categories of counter examples in the process of
establishing inductive invariants using a theorem prover

• Two methods for finding two of the most common categories of counter
examples based on random testing

• An evaluation of the methods in the context of the verification of an indust-
rial-strength implementation of a leader election protocol

The rest of the paper is organized as follows. The next section explains the
method of verification we use in more detail. Section 3 explains the testing tech-
niques we use. Section 4 reports on the results of our method in the verification
of the leader election implementation. Section 5 concludes.

154 Finding Counter Examples in Induction Proofs

2 Verification Method

In this section, we describe the basic verification method we use to prove invari-
ants. The method is quite standard; an earlier description of the method in the
context of automated first-order logic reasoning tools can be found in [8]. The
system under verification and the invariants are described using three compo-
nents:

• A predicate Init describing the initial state,

• A predicate Inv describing the invariant,

• A predicate transformer [Sys] that abstractly describes one transition of
the system.

For the predicate transformers, we borrow notation also used in dynamic logic
[5] and the B-method [1, 21]. For a program S and a post-condition Q, we write
[S]Q to be the weakest pre-condition for S that establishes Q as a post-condition.
This in turn means that we can write

P → [S]Q

which has the same meaning as the Hoare triple {P}S{Q}; in all states where P
holds, making the transition described by S leads to states where Q holds.

The language we use to describe Sys is very simple. The three most im-
portant constructs are assignments, conditionals, and non-deterministic choice.
The definition of predicate transformers we use is completely standard, and we
will only briefly discuss the concepts here. For more details, the reader can con-
sult [21]. Here are the definitions for the predicate transformers for assignments,
conditionals, and non-deterministic choice, respectively.

[x := e] P = P{e/x}

[ifQ then S else T] P = (Q→ [S]P) ∧ (¬Q→ [T]P)

[S | T] P = [S]P ∧ [T]P

Establishing Inv as an invariant amounts to proving the following two statements:

Init → Inv

Inv → [Sys] Inv

In practice, Inv is really a conjunction of a number of smaller invariants:

Init → Inv1 ∧ Inv2 ∧ · · · ∧ Invn

Inv1 ∧ Inv2 ∧ · · · ∧ Invn → [Sys] (Inv1 ∧ Inv2 ∧ · · · ∧ Invn)

The above two proof obligations are split up into several sub-obligations; for the
initial states, we prove, for all i, several obligations of the form:

Init→ Invi

2 – Verification Method 155

∀Pid,Pid2.(
(elem(m Halt(Pid),

queue(host(Pid2)))
→ (host(Pid2) > host(Pid))

)
)

The invariant states that Halt-messages
are only sent to processes with lower
priority: If there is a Halt-message
from Pid in the queue of host(Pid2),
then host(Pid2) is larger than host(Pid).
(Hosts with low numbers have high pri-
ority.)

Figure 1: Example invariant

For the transitions, we prove, for all i, several obligations of the form:





∧

j∈Pi

Invj



 → [Sys] Invi

So, for each invariant conjunct Invi, we have a subset of the invariants Pi that
we use as a pre-condition for establishing Invi. Logically, we can use all invari-
ants Invj as pre-condition, but in practice the resulting proof obligations would
become too large to be manageable by the theorem provers we use. Also, from
a proof engineering point of view, it is good to “localize” dependencies, so that
when the set of invariants changes, we only have to redo the proofs for the obli-
gations that were involved in the invariants we changed. (Note that the set Pi

can actually include the invariant Invi itself.)

To simplify the problems as much possible, we also use an aggressive case
splitting strategy, in the same way as described in [8]. Thus each of the above
proof obligations is proved in many small steps.

In Fig. 1 we show an example of an invariant. The function host(p) returns
the host for a given process p, the predicate elem(m, q) is true if a message m
is present in a message queue q. In this example we have an incoming message
queue queue(h) for each host h. (This simplification from having a message queue
per process is possible since there is only one process alive per host.)

2.1 Failed Proof Attempts

This paper deals with the problem of what to do when a proof attempt of one
of the proof obligations fails. Let us look at what can be the reason for a failed
proof attempt when proving the proof obligations related to a particular candidate
invariant Invi. We can identify 4 different reasons:

(1) The candidate invariant Invi is not an invariant of the system; there exists
a reachable state of the system that falsifies Invi.

(2) The candidate invariant Invi actually is an invariant of the system, but
it is not an inductive invariant. This means that there exists an (unreachable)
state where all invariants in the pre-condition set Pi of Invi are true, but after a
transition, Invi is not true. This means that the proof obligation for the transition
for Invi cannot be proven.

156 Finding Counter Examples in Induction Proofs

(3) The candidate invariant Invi actually is an invariant of the system, and it
is an inductive invariant. However, our background theory is not strong enough
to establish this fact. The background theory contains axioms about message
queues, in what order messages arrive, what happens when processes die, etc.
If these are not strong enough, the proof obligation for the transition for Invi
cannot be proven.

(4) The proof obligations are provable, but the theorem prover we use does
not have enough resources, and thus a correctness proof cannot be established.

When a proof attempt for a proof obligation fails, it is vital to be able to dis-
tinguish between these 4 cases. The remedies in each of these cases are different:

For (1), we have to weaken the invariant Invi, or perhaps remove it from the
set of invariants altogether.

For (2), we have to strengthen the set of pre-conditions Pi. We can do this by
strengthening some invariants in Pi (including Invi itself), or by adding a new
invariant to the set of invariants and to Pi.

For (3), we have to strengthen the background theory by adding more axioms.

For (4), we have to simplify the problem by for example using explicit case-
splitting, or perhaps to give the theorem prover more time.

2.2 Identifying the Categories

How can we identify which of the cases (1)-(4) we are in? A first-order logic
theorem prover does not give any feedback in general when it does not find a proof.
Some theorem provers, including the ones we used (Vampire [20], E-prover [16],
SPASS [10], and Equinox [7]) do provide feedback in certain cases, for example
in the form of a finite-domain counter model or a saturation, but this hardly ever
happens in practice.

One observation that we can make is that for cases (1)-(3), there exist counter
examples of different kinds to the proof obligations.

For (1), the counter example is a concrete trace from the initial state to the
reachable state that falsifies the invariant Invi.

For (2), the counter example is a concrete state that makes the pre-conditions
Pi true, but after one transition the invariant Invi does not hold anymore.

For (3), the counter example is a concrete counter model that makes the
background theory true but falsifies the proof obligation. This counter model
must be a non-standardmodel of the background theory, since the proof obligation
is true for every standard model (which is implied by the fact that no concrete
counter example of kind (2) exists).

We would like to argue that, if the user were given feedback consisting of (a)
the category of counter example above, and (b) the concrete counter example, it
would greatly improve productivity in invariant-based verification.

In the next section, we show how we can use techniques from random testing to
find counter examples of type (1) and (2) above. We have not solved the problem
of how to find counter examples of type (3), which remains future work. (This
is an unsolvable problem in general because of the semi-decidability of first-order
logic.) Luckily, cases (1) and (2) are most common in practice, because, in our

3 – Finding Counter Examples by Random Testing 157

experience, the background theory stabilizes quite quickly after the start of such
a project.

We would like to point out a general note on the kind of counter examples
we are looking for. Counter examples of type (1) are counter examples in a
logic in which we can define transitive closure of the transition relation. This is
necessarily a logic that goes beyond first-order logic. This logic for us exists only
on the meta-level, since we are merely performing the induction base case and
step case with theorem provers that can not reason about induction. Counter
examples of type (2) are only counter examples of the induction step (and do not
necessarily imply the existence of counter examples of the first kind). In some
sense, these can be seen as non-standard counter examples of the logic used in type
(1) counter examples. Counter examples of type (3) are also counter examples of
the induction step, but they do not follow the intended behavior of our function
and predicate symbols, and are therefore non-standard counter examples of the
induction step.

3 Finding Counter Examples by Random Testing

This section describes the random testing techniques that we used to find concrete
counter examples to the proof obligations.

3.1 QuickCheck

QuickCheck [9] is a tool for performing specification-based random testing, orig-
inally developed for the programming language Haskell. QuickCheck defines a
simple executable specification logic, in which universal quantification over a set
is implemented as performing random tests using a particular distribution. The
distribution is specified by means of providing a test data generator. QuickCheck
comes equipped with random generators for basic types (Integers, Booleans, Pairs,
Lists, etc) and combinator functions, from which it is fairly easy to build gener-
ators for more complex data structures.

When QuickCheck finds a failing test case (a test case that falsifies a property),
it tries to shrink this test case by successively checking if smaller variants of
the original failing test case are still failing cases. When the shrinking process
terminates, a (locally) minimal failing test case is presented to the user. The user
can provide custom shrinking functions that specify what simplifications should
be tried on the failing case. This is a method akin to delta debugging [22].

For example, if we find a randomly generated concrete trace which makes an
invariant fail, the shrinking function says that we should try removing one step
from the trace to see if it is still a counter example. When the shrinking process
fails, the trace we produce is minimal in the sense that every step in the trace
is needed to make the invariant fail. One should note that it is very valuable to
have short counter examples; it drastically reduces the time spent on analyzing
and fixing the errors found.

158 Finding Counter Examples in Induction Proofs

3.2 Trace counter examples

A trace counter example is a counter example of type (1) in the previous section.
We decided to search for trace counter examples in the following manner (this is
inspired by ’State Machine Specifications’ in [14]). Given a set of participating
processes, we can construct an exhaustive list of possible operations (examples
of operations could be: process X receives a Halt-message, process Y crashes,
process Z is started, etc). We constructed a QuickCheck generator that returns
a random sequence of operations. To test the invariant we then create the initial
state for the system (where all participants are dead and all message queues are
empty) and apply the operation sequence. The result is a sequence of states, and
in each state we check that the invariant holds.

If a counter example to the invariant is found, shrinking is performed by simply
removing some operations. To further shrink a test case we also try to remove
one of the participating processes (together with its operations). We illustrate
how all of this works with the (trivially incorrect) invariant ∀Pid.¬isLeader(Pid)
(i.e. there is never a leader elected). Formulated in QuickCheck, the property
looks as follows:

prop_NeverALeader =

\path -> checkPath leStoller (forAll pid (nott (isLeader pid))) path

We use the function checkPath, which takes three arguments: a model of an
Erlang program (in this case leStoller), a first-order formula (the property)
and a trace (called path), and checks that the given formula is true for all states
encountered on the specified path. The QuickCheck property states that the
result should be true for all paths. Running QuickCheck yields:

*QCTraceCE> quickCheck prop_NeverALeader

*** Failed! Falsifiable (after 3 tests and 3 shrinks):

Path 1 [AcStart 1]

The counter example is a path involving one process (indicated by “Path 1”,
and one step where we start that process (indicated by “AcStart 1”), and clearly
falsifies the property. (The leader election algorithm is such that if there is only
a single participant, it is elected immediately when it is started.) This counter
example has been shrunk, in 3 shrinking steps, from an initial, much larger,
counter example. The steps it went through, removing unnecessary events, in
this case were:

Path 1 [AcOnMsg 1 AcLdr,AcOnMsg 1 AcDown,AcOnMsg 1 AcAck,AcOnMsg 1 AcHalt,

AcStart 1,AcStart 1,AcOnMsg 1 AcNormQ,AcPer 1]

Path 1 [AcStart 1,AcStart 1,AcOnMsg 1 AcNormQ,AcPer 1]

Path 1 [AcStart 1,AcStart 1]

Path 1 [AcStart 1]

Here, “AcOnMsg p m” indicates that process p receives a message of type m.
The different message types (“AcLdr”, “AcDown”, “AcAck”, etc.) are part of the
internal details of Stoller’s leader election protocol [18] and are not explained
here.

3 – Finding Counter Examples by Random Testing 159

Being able to quickly generate locally minimal counter examples to candi-
date invariants greatly improved our productivity in constructing a correct set of
invariants.

3.3 Induction step counter examples

Step counter examples are counter examples of type (2). To find step counter
examples is more challenging. Step counter examples can be expected when the
stated invariant holds, but its pre-conditions are too weak to be proved. The
proof fails in the step case, that is there exists a (non-reachable) state s such
that the invariant is true in s, but false in some state s′, such that s′ ∈ next(s).
The difference from trace counter examples is that we are now looking for non-
reachable states, which are significantly harder to generate in a good way.

Our first, very naive, try was to simply generate completely random states, and
check if the proof obligation can be falsified by these. We implemented this strat-
egy by constructing a random generator for states and tried to use QuickCheck
in the straightforward way. However, not surprisingly, this fails miserably. The
reason is that it is very unlikely for a randomly generated state to fulfill all pre-
conditions of the proof obligation for the transition. Other naive approaches,
such as enumerating states in some way, do not work either, since the number of
different states are unfeasibly large, even with very small bounds on the number
of processes and number of messages in message queues.

The usual way to solve this in QuickCheck testing is to make a custom gen-
erator whose results are very likely to fulfill a certain condition. However, this is
completely unpractical to do by hand for an evolving set of about 90 invariants.

Instead, we implemented a test data generator generator. Given a first-order
formula φ, our generator-generator automatically constructs a random test data
generator which generates states that are very likely to fulfill φ. So, instead
of manually writing a generator for each invariant Invi, we use the generator-
generator to generate one. We then use the resulting generator in QuickCheck to
check that the property holds.

Our generator-generator, given a formula φ, works as follows. Below, we define
a process, called adapt that, given a formula φ and a state s, modifies s so that it
is more likely to make φ true. The generator first generates a completely random
state s, and then successively adapts s to φ a number of times. The exact number
of times can be given as a parameter.

The adapt process works as follows. Given a formula φ and a state s, we do
the following:

1 Check if s fulfills φ. If so, then we return s.

2 Otherwise, look at the structure of φ.

– If φ is a conjunction φ1 ∧ φ2, recursively adapt s to the left-hand
conjunct φ1, and then adapt the result to the right-hand conjunct φ2.

– If φ is a disjunction φ1 ∨ φ2, randomly pick a disjunct φi, and adapt s
to it.

160 Finding Counter Examples in Induction Proofs

– If φ starts with a universal quantifier ∀x ∈ S.ψ(x), S will be con-
cretely specified by the state s. We construct a big explicit conjunction
∧

x∈S ψ(x), and adapt s to it.

– If φ starts with an existential quantifier ∃x ∈ S.ψ(x), construct a big
explicit disjunction

∨

x∈S ψ(x), and adapt s to it.

– If φ is a negated formula, push the negations inwards and adapt s to
the non-negated formula.

– If φ is a (possibly negated) atomic formula, change s so that the atomic
formula is true, if we know how to (see below). Otherwise, just return
s.

Quantifiers in φ always quantify over things occurring in the state s, for example
the set of all processes, or the set of all processes currently alive, etc. When
adapting s to φ, these sets are known, so we can create explicit conjunctions or
disjunctions instead of quantifiers.

When randomly picking a disjunct, we let the distribution be dependent on
the size of the disjuncts; it is more likely here to pick a large disjunct than a
small disjunct. This was added to make the process more fair when dealing with
a disjunction of many things (represented as a number of binary disjunctions).

Finally, we have to add cases that adapt a given state s to the atomic formulae.
The more cases we add here, the better our adapt function becomes. Here are
some examples of atomic formulae occurring in φ, and how we adapt s to them:

• “message queue q1 is empty”, in this case we change the state s such that
q1 becomes empty;

• “process p1 is not alive”, in this case we remove p1 from the set of alive
processes in s;

• “queue q1 starts with the message Halt”, in this case we simply add the
message Halt to the queue q1.

Note that there is no guarantee that an adapted state satisfies the formula.
For example, when adapting to a conjunction, the adaption process of the right-
hand conjunct might very well undo the adaption of the left-hand conjunct. It
turns out that successively adapting a state to a formula several times increase the
likelihood of fulfilling the formula. There is a general trade-off between adapting
a few states many times or adapting many states fewer times. The results of our
experiments suggest that adapting the same state 4-8 times is preferable (Sect.
4).

The final property we give to QuickCheck looks as follows; remember the
problem





∧

j∈Pi

Invj



 → [Sys] Invi

and let invs be the left hand side of the implication, inv is Invi and applySys

corresponds to the []-operation:

4 – Results 161

prop_StepProofObligation invs inv sys =

\state ->

forAll (adapt formula state) $ \state’ ->

checkProperty formula state’

where formula = and (nott inv’ : invs)

inv’ = applySys sys inv

This can be read as: For all states s, and for all adaptions s′ of that state s to
the proof obligation, the proof obligation should hold. The function adapt is our
implementation of the adapt generator-generator, and checkProperty checks if a
given formula is true in a given state. Remember that we want to find a counter
example state, that is why we try to adapt the state so that the pre-conditions
(invs) are fulfilled but inv’ is not.

The experimental results are discussed in the next section.

4 Results

In this section we present some results from the usage of search for counter ex-
amples in the verification of the leader election algorithm. Since the data comes
from only one verification project it might not be statistically convincing, but it
should be enough to give some idea of how well the search for counter examples
works in practice.

4.1 Trace Counter Examples

To illustrate the effectiveness of trace counter examples we first show one par-
ticular example. In Fig. 2 we see an invariant A that was added to the set of
pre-conditions in order to be able to prove another invariant B (i.e. this was the
action taken after a failed proof attempt in category 2, as described in Sect. 2.1).
The original invariant B was easily proved after this addition, however we could
not prove the new invariant A. After several days of failed proof attempts, we
managed to (manually) find a counter example. The counter example was really
intricate, involving four different nodes and a non-trivial sequence of events.

With this unsatisfying experience in fresh memory, we were eager to try the
trace counter example finder on this particular example. The result was very
positive, the counter example was quickly found (in the presented run after 170
tests), and we could quickly verify that it was equivalent to the counter example
that we found manually. The result of the QuickCheck run on this example is
presented in Fig. 3.

The counter example consists of a Path value. From this value we can conclude
that the counter example involves four processes. We can also see the sequence
of operations leading to a state where the invariant is falsified. This sequence
contains five process starts (AcStart), three process crashes (AcCrash) and two
receives of Down-messages by process number 3 (AcOnMsg). It is interesting to see
that the fourth process is never started, and never actually does anything, nev-
ertheless it must be present in order to falsify the invariant (or else the shrinking
would have removed it).

162 Finding Counter Examples in Induction Proofs

∀Pid,Pid2,Pid3.((
((Pid ∈ alive)
∧ elem(m Down(Pid2),

queue(host(Pid)))
∧ (lesser(host(Pid)) ⊆

(down[host(Pid)] ∪ {host(Pid2)}))
∧ (status[host(Pid)] = elec 1))
→ ¬((pendack[host(Pid3)] > host(Pid))

∧ (Pid3 ∈ alive)
∧ (status[host(Pid3)] = elec 2))

)
)

Whenever a process (Pid) is alive, in
the first election phase (elec 1) and it
receives a Down-message such that Pid

has received Down-messages from ev-
eryone with higher priority (that is the
hosts in the set lesser(host(Pid))).
Then no other process (here Pid3) is
alive, in the second election phase and
having communicated with Pid (i.e.
having a pendack value larger than
host(Pid)).

Figure 2: A broken invariant

*** Failed! Falsifiable (after 170 tests and 30 shrinks):

Path 4 [AcStart 2,AcStart 3,AcCrash 2,AcStart 1,AcCrash 1,

AcOnMsg 3 AcDown,AcStart 2,AcOnMsg 3 AcDown,AcStart 1,AcCrash 1]

Figure 3: Trace counter example

Evaluation of Trace Counter Examples

Although the verification process was complicated, we did not have very many
badly specified invariants around to test with. The presented example was the
most complicated and in total we had some five or six real ’broken’ invariants to
test with. (All of them produced a counter example.) To further evaluate the
trace counter example search in a more structural way, we used a simplistic kind
of mutation testing. We took each invariant and negated (or if it was already
negated, removed the negation) all sub-expressions occurring on the left hand
side of an implication. Thereafter we tried the trace counter example search for
each of the mutated invariants.

In total we generated 272 mutated invariants. We tried to find a trace counter
example for each, and succeeded in 187 cases (where we randomly generated 300
test cases for each invariant). However, we should not expect to find a trace
counter example in all cases, since some of the mutated invariants are still true
invariants. Manual inspection of 10 of the 85 (272−187 = 85) failed cases revealed
only two cases where we should expect to find a counter example. (A re-run of
the two examples with a limit of 1000 generated tests was run, and a counter
example was found in both cases.)

4.2 Induction Step Counter Examples

To illustrate how the inductive step counter examples could be used we use the
invariant presented below as an example. This invariant was actually the last
invariant that was added in order to complete the proof of the leader election al-
gorithm. The invariant specifies a characteristic of the acknowledgement messages
sent during election.

4 – Results 163

∀Pid,Pid2,Pid3.(
(((Pid2 6= Pid3)
∧ elem(m Ack(Pid,Pid2),

queue(host(Pid)))
∧ (host(Pid2) = host(Pid3)))
→ ¬elem(m Ack(Pid,Pid3),

queue(host(Pid)))
)

)

If Pid2 and Pid3 are two different pro-
cesses at the same host, and an Ack-
message from Pid2 to Pid is in Pid’s
queue, then there can not also be an
Ack-message in the queue of Pid sent
by Pid3 to Pid.

Figure 4: Invariant for step counter example example

The first proof attempt included invariants 3, 14 and 15 (which are also
invariants that specify properties about Ack-messages), i.e. we tried to prove
(Inv3 ∧ Inv14 ∧ Inv15 ∧ Inv89) → [Sys] Inv89. This proof attempt fails, and if we
search for an induction step counter example we get the following state:

State with 2 processes:

* Alive: {(2,3),(2,5)}

* Pids: {(2,3)}

[Process: (1,2)

Status: norm Elid: (2,3) Ldr: 1 Pendack: 2

Queue: [Ack (1,2) (2,3)]

Acks: {} Down: {},

Process: (2,3)

Status: wait Elid: (1,2) Ldr: 2 Pendack: 2

Queue: [Halt (1,2)]

Acks: {} Down: {}]

The system state consists of two sets alive (that contains the process identi-
fiers of all processes currently alive) and pids (that contains all process identifiers
ever used). A process identifier is implemented as a pair of integers. Furthermore,
the individual state of each process is also part of the system state. Each process
state has a number of algorithm-specific variables (Status, Elid, etc.), and an
incoming message queue.

In the counter example we see that the second process has a Halt-message
from the first process in its queue at the same time as there is an Ack-message
in the queue of the first process. That means that in the next step the second
process could acknowledge the Halt-message, and thus create a state in which
the invariant is falsified. Indeed such a situation can not occur, and we actually
already had an invariant (with number 84) which stated exactly this. Therefore,
if we instead try to prove: (Inv3 ∧ Inv14 ∧ Inv15 ∧ Inv84 ∧ Inv89) −→ [Sys] Inv89
we are successful.

164 Finding Counter Examples in Induction Proofs

Evaluation of Step Counter Examples

In the verification of the leader election algorithm we used 89 sub-invariants which
were proved according to the scheme

(Inv1 ∧ Inv2 ∧ · · · ∧ Invk) −→ [Sys] Inv1

Since the automated theorem provers are rather sensitive to the problem size, we
put some effort into creating minimal left hand sides of the implication. That
is, we removed the sub-invariants that were not needed to prove a particular
sub-invariant.

Therefore, a simple way to generate evaluation tests for the step counter exam-
ple search is to remove yet another sub invariant from the left hand side and thus
get a problem which in most cases (the minimization was not totally accurate) is
too weak to be proved in the step case. Thus, we generate a set of problems like

(Inv1 ∧ Inv2 ∧ · · · Invk−1 ∧ Invk+1 ∧ · · · ∧ Invn) −→ [Sys] Inv1

and evaluate the step counter example search on this set of problems.

0

100

200

300

Max

 0 50 100 150 200 250 300 350 400 450 500

C
ou

nt
er

 e
xa

m
pl

es

Test cases

Finding counter examples 1-20 iterations and 500 test cases

1 iteration
2 iterations
4 iterations
8 iterations

20 iterations

Figure 5: Step counter example results

In this way, the 89 proof obligations were turned into 351 problems to test the
step counter example search with. More careful analysis revealed that 30 of the
problems were actually still provable, thus leaving 321 test cases. The result of
running the step counter example search in QuickCheck with 500 test cases for
each problem, and a varying number of adapt rounds, is presented in Fig. 5.

4 – Results 165

In the figure we see that with only one iteration of adapt we find a counter
example for around 75% of the tested problems. By increasing the number adapt
rounds, we find a counter example for 97% of the tested problems within 500 test
cases.

In reality, case-splitting [8] turned these 321 into 1362 smaller problems of
which 524 are provable. The results of running the step counter example search
in QuickCheck for each of these smaller problems are presented in Fig. 6. The
results are quite similar to the results in the earlier figure.

0

200

400

600

800
Max

 0 50 100 150 200 250 300 350 400 450 500

C
ou

nt
er

 e
xa

m
pl

es

Test cases

Finding counter examples 1-20 iterations and 500 test cases

1 iteration
2 iterations
4 iterations
8 iterations

20 iterations

Figure 6: Step counter example results

Our conclusion is that this way of finding counter examples is remarkably
effective, especially keeping in mind that the counter example search we presented
is a fully automatic and a very cheap method. Running QuickCheck for a failed
proof attempt takes only from a few seconds, sometimes up to a few minutes.

Another important aspect is the quality of the counter examples; i.e. given an
induction step counter example, how hard is it to figure out how to strengthen
the invariant to make it provable. Of course this is hard to measure, and any
judgement here is highly subjective. We randomly selected some of the found
counter examples and inspected them more carefully. In most cases it was easy
to find out which sub-invariant to add, which was the original purpose of the
method.

Interestingly, in some examples, the counter example indicated that a certain
sub-invariant was missing, which was different from the sub-invariant we had
removed. (Remember, we generated the tests by removing one sub-invariant

166 Finding Counter Examples in Induction Proofs

from already proved examples.) It turned out that we could actually prove the
problem by either using the removed sub-invariant or the sub-invariant suggested
by the counter example. For example: from the (already proved) problem (Inv4∧
Inv7∧Inv8) −→ [Sys]Inv8 we removed Inv4. This resulted in a counter example,
which indicated that adding Inv2 would probably make it possible to prove the
sub-invariant. Indeed the problem (Inv2 ∧ Inv7 ∧ Inv8) −→ [Sys] Inv8 could be
proved. The reason for this is that Inv2 and Inv4 were partially overlapping.
The conclusion must nevertheless be that an induction step counter example is
most often very useful.

5 Discussion and Conclusion

We have identified different categories of reasons why proof attempts that estab-
lish inductive invariants may fail, and developed a method that can identify 2 of
these categories by giving feedback in terms of a concrete counter example.

We would like to argue that the results show that this is a useful method;
very often counter examples are found when they should be found, and they are
easy to understand because of the (local) minimality. The method is also very
cheap, once the system is set up, it does not take much time or resources to run
300 random tests. Every time we make changes to the set of invariants, a quick
check can be done to make sure no obvious mistakes have been made.

For related work, just like pure first-order logic theorem provers, interactive
theorem proving systems usually do not provide feedback in terms of a counter
example either. ACL2 [15] provides feedback by producing a log of the failed proof
attempt. While sometimes useful, we would like to argue that feedback in terms
of counter examples (and in terms of different kinds of counter examples) is more
directly useful for a user. In some work in the context of rippling [17], a failed
proof attempt is structurally used to come up with an invariant for while-loops
in imperative programs.

The interactive higher-order logic reasoning system Isabelle comes with a ver-
sion of QuickCheck [6]. However, there is no control over generators or shrinking
present in this version. The work presented here can possibly be integrated with
Isabelle by extending their QuickCheck with the necessary features.

Some might argue that the main problems presented in the paper disappear
when moving to a reasoning system that supports induction, for example ACL2
or a higher-order theorem prover. However, in such systems it is still useful to
have a notion of different reasons why inductive proofs fail, and the three types
of counter examples (1), (2) and (3) are just as useful in such systems.

For future work, we are looking to further reduce the gap between problems
where proofs are found and problems where counter examples are found. We are
currently working to augment a theorem prover to also give us feedback that can
be used to identify categories (3) and (4). For category (3), an approximation of
a non-standard counter model is produced, for category (4), the theorem prover
can tell why it has not found a proof yet.

Moreover, we want to study liveness more closely, and integrate liveness check-
ing (and finding counter examples) in the overall verification method.

REFERENCES 167

Finally, to increase the applicability of our work, we would like to separate
out the different parts of our current system; the counter example finding from
the Erlang-specific things, and the leader-election-specific axioms and invariants
from the general Erlang axioms.

References

[1] J-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[2] J. Armstrong. Programming Erlang – Software for a Concurrent World. The
Pragmatic Programmers, http://books.pragprog.com/titles/jaerlang, 2007.

[3] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent Pro-
gramming in Erlang. Prentice-Hall, 1996.

[4] Thomas Arts, Koen Claessen, and Hans Svensson. Semi-formal development
of a fault-tolerant leader election protocol in Erlang. In Lecture Notes in
Computer Science, volume Vol. 3395, p. 140 – 154, Feb 2005.

[5] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors. Verification
of Object-Oriented Software: The KeY Approach. LNCS 4334. Springer-
Verlag, 2007.

[6] T. Berghofer, S.; Nipkow. Random testing in isabelle/hol. Software Engi-
neering and Formal Methods, 2004. SEFM 2004. Proceedings of the Second
International Conference on, p. 230–239, 28-30 Sept. 2004.

[7] Koen Claessen. Equinox, a new theorem prover for full first-order logic
with equality. Presentation at Dagstuhl Seminar 05431 on Deduction and
Applications, October 2005.

[8] Koen Claessen, Reiner Hähnle, and Johan Mårtensson. Verification of hard-
ware systems with first-order logic. In Proc. of Problems and Problem Sets
Workshop (PaPS), 2002.

[9] Koen Claessen and John Hughes. QuickCheck: a lightweight tool for random
testing of haskell programs. In ICFP ’00: Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming, p. 268–279,
New York, NY, USA, 2000. ACM.

[10] C. Weidenbach et al. SPASS: An automated theorem prover for first-order
logic with equality. http://spass.mpi-sb.mpg.de.

[11] L-Å. Fredlund and H. Svensson. McErlang: A model checker for a distributed
functional programming language. In Proc. of International Conference on
Functional Programming (ICFP). ACM SIGPLAN, 2007.

[12] Hector Garcia-Molina. Elections in a distributed computing system. IEEE
Transactions on Computers, C-31(1):48–59, January 1982.

168 REFERENCES

[13] Gerard J. Holzmann. The Spin Model Checker: Primer and Reference Man-
ual. Addison-Wesley, September 2003. ISBN: 0-321-22862-6.

[14] John Hughes. QuickCheck testing for fun and profit. In Michael Hanus,
editor, Practical Aspects of Declarative Languages, volume 4354 of LNCS, p.
1–32. Springer-Verlag, Berlin Heidelberg, 2007.

[15] Matt Kaufmann and J Strother Moore. ACL2 - A Computational Logic /
Applicative Common Lisp. http://www.cs.utexas.edu/users/moore/acl2/.

[16] Stephan Schulz. The e equational theorem prover. http://eprover.org.

[17] Jamie Stark and Andrew Ireland. Invariant discovery via failed proof at-
tempts. In Proceedings, 8th International Workshop on Logic Based Program
Synthesis and Transformation, 1998.

[18] S.D. Stoller. Leader election in distributed systems with crash failures. Tech-
nical Report 481, Computer Science Dept., Indiana University, May 1997.
Revised July 1997.

[19] Hans Svensson and Thomas Arts. A new leader election implementation. In
ERLANG ’05: Proceedings of the 2005 ACM SIGPLAN workshop on Erlang,
p. 35–39, New York, NY, USA, 2005. ACM Press.

[20] Andrei Voronkov. Vampire. http://www.vampire.fm.

[21] J.B. Wordsworth. Software Engineering with B. Addison-Wesley, 1996.

[22] Andreas Zeller. Isolating cause-effect chains from computer programs. In
SIGSOFT ’02/FSE-10: Proceedings of the 10th ACM SIGSOFT symposium
on Foundations of software engineering, p. 1–10, New York, NY, USA, 2002.
ACM.

Appendix

A.1 Appendix Overview

Most of the material in the appendix is generated directly from the input to the
proof procedure, which is annotated with explaining text. Sect. A.2 and A.3
describes the predicate symbols and function symbols used in the first-order logic
formulas. Sect. A.4 lists all the used axioms, divided into roughly the same
categories as Sect. 5.2. Lastly, in Sect. A.5, all the 89 invariants are listed.

A.2 Predicates

• elem/2 – elem(Msg,Queue) is true if the message is present in Queue.

• isSubset/2 – Set1 ⊆ Set2, is true if Set1 is a subset of Set2.

• leq/2 – N1 ≤ N2, is true if N1 is less than or equal to N2.

• ordered/1 – ordered(Queue), is true if the messages in the Queue is ordered
according to Pids.

• setIn/2 – Elem ∈ Set, is true if Elem is a member of Set.

• twice/2 – twice(Msg, Queue), is true if Msg is present twice in Queue.

A.3 Functions/Constant Symbols

A.3.1 State-arrays - indexed by host

• ldr/0 – Ldr-array, stores the host of the current leader.

• acks/0 – Acks-array, stores the acks set for each host.

• down/0 – Down-array, stores the down set for each host.

• elid/0 – Elid-array, stores the election id for each host.

• status/0 – Status-array, stores the status for each host.

• pendack/0 – Pendack-array, stores the host that the process is waiting for an
answer from.

• queue/1 – Queue-array, stores the receive queues for each host.

169

170 Invariants, axioms and definitions

A.3.2 Natural numbers

• zero/0 – The constant number zero.

• s/1 – The successor function

• nbr proc/0 – The number of participating processes

A.3.3 State-names

• elec 1/0 – Election state 1, waiting for higher prioritized process.

• elec 2/0 – Election state 2, waiting for process with lower priority.

• wait/0 – Waiting state, waiting for Ldr-message from new leader.

• norm/0 – Normal state, either the process is the leader or knows the leader.

A.3.4 Global sets

• alive/0 – A set that stores all processes that are currently alive.

• pids/0 – A set that stores all processes that has ever existed.

A.3.5 Messages

• m Halt/1 – Halt-message, contains the sender.

• m Ack/2 – Ack-message, contains the sender and the acknowledged process.

• m Ldr/1 – Ldr-message, contains the leader pid.

• m Down/1 – Failure message, contains the failing pid.

• m NormQ/1 – Question for normality, is replied to if a process is not in state
norm.

• m NotNorm/1 – A response to a NormQ-message, contains the process that
asked NormQ.

A.3.6 Set functions

• setUnion/2 – The normal set union operation, written ∪.

• setAdd/2 – Adds an element to a set, written ⊕.

• setDel/2 – Deletes an element from a set, written ⊖.

• lesser/1 – Given a host, returns a set of all hosts with higher priority

A.3.7 Array functions

• index/2 – Indexes an array, written array[ind].

A.3.8 Host function

• host/1 – Given a pid the function returns the host of the pid

A.4 – Axioms 171

A.4 Axioms

A.4.1 Axioms – stoller

• ∀P,Q.(
((s(host(P)) = host(Q))

→ (host(P) 6= host(Q))
)

)

• ∀P.((s(zero) ≤ host(P)))

• (s(zero) ≤ nbr proc)

• ∀P.((host(P) ≤ nbr proc))

• (elec 1 6= elec 2)

• (elec 1 6= wait)

• (elec 1 6= norm)

• (elec 2 6= wait)

• (elec 2 6= norm)

• (norm 6= wait)

• ∀X,Y,Z.((m Ack(X,Y) 6= m Halt(Z)))

• ∀X,Y,Z.((m Ack(X,Y) 6= m Down(Z)))

• ∀X,Y,Z.((m Ack(X,Y) 6= m NotNorm(Z)))

• ∀X,Y,Z.((m Ack(X,Y) 6= m Ldr(Z)))

• ∀X,Y,Z.((m Ack(X,Y) 6= m NormQ(Z)))

• ∀X,Y.((m NotNorm(X) 6= m Halt(Y)))

• ∀X,Y.((m Down(X) 6= m Halt(Y)))

• ∀X,Y.((m Down(X) 6= m Ldr(Y)))

• ∀X,Y.((m Down(X) 6= m NotNorm(Y)))

• ∀X,Y.((m Down(X) 6= m NormQ(Y)))

• ∀X,Y.((m NormQ(X) 6= m Halt(Y)))

• ∀X,Y.((m Ldr(X) 6= m Halt(Y)))

• ∀X,Y.((m Ldr(X) 6= m NormQ(Y)))

• ∀X,Y.((m Ldr(X) 6= m NotNorm(Y)))

• ∀X,Y.((m NormQ(X) 6= m NotNorm(Y)))

• ∀X,Y.(
((X 6= Y) ↔ (m Halt(X) 6= m Halt(Y)))

)

• ∀X,Y.(
((X 6= Y) ↔ (m NormQ(X) 6= m NormQ(Y)))

)

• ∀X,Y.(
((X 6= Y) ↔ (m NotNorm(X) 6= m NotNorm(Y)))

)

172 Invariants, axioms and definitions

• ∀X,Y.(((X 6= Y) ↔ (m Ldr(X) 6= m Ldr(Y))))

• ∀X,Y.(
((X 6= Y) ↔ (m Down(X) 6= m Down(Y)))

)

• ∀X1,X2,Y1,Y2.(
((X1 6= X2)

→ (m Ack(X1,Y1) 6= m Ack(X2,Y2))
)

)

• ∀X1,X2,Y1,Y2.(
((Y1 6= Y2)

→ (m Ack(X1,Y1) 6= m Ack(X2,Y2))
)

)

A.4.2 Axioms – con-sys

• ∀Pid2,Pid.(
((host(Pid) 6= host(Pid2)) → (Pid 6= Pid2))

)

• (nil /∈ alive)

A.4.3 Axioms – cons-snoc

• ∀X,Q.((head(cons(X,Q)) = X))

• ∀X,Q.((tail(cons(X,Q)) = Q))

• ∀Y,Q.((last(snoc(Q,Y)) = Y))

• ∀Y,Q.((init(snoc(Q,Y)) = Q))

• ∀Q.(
((Q = q nil) ∨ (Q = cons(head(Q), tail(Q))))

)

• ∀Q.(
((Q = q nil) ∨ (Q = snoc(init(Q), last(Q))))

)

• ∀X,Q.((q nil 6= cons(X,Q)))

• ∀Y,Q.((q nil 6= snoc(Q,Y)))

• ∀X.((cons(X, q nil) = snoc(q nil,X)))

• ∀X,Y,Q.((snoc(cons(X,Q),Y) = cons(X, snoc(Q,Y))))

• ∀X.(¬elem(X, q nil))

• ∀X,Y,Q.(
(elem(X, cons(Y,Q)) ↔ (elem(X,Q) ∨ (X = Y)))

)

• ∀X,Y,Q.(
(elem(X, snoc(Q,Y)) ↔ (elem(X,Q) ∨ (X = Y)))

)

A.4 – Axioms 173

• ∀X,Y,Q.(
(elem(m Down(X),Q)

↔ elem(m Down(X), snoc(Q, m Halt(Y)))
)

)

• ∀X,Y,Q.(
(elem(m Down(X),Q)

↔ elem(m Down(X), snoc(Q, m Ldr(Y)))
)

)

• ∀X,Y,Q.(
(elem(m Down(X),Q)

↔ elem(m Down(X), snoc(Q, m NotNorm(Y)))
)

)

• ∀X,Y,Q.(
(elem(m Down(X),Q)

↔ elem(m Down(X), snoc(Q, m NormQ(Y)))
)

)

• ∀X,Y,Q.(
(elem(m Ldr(X),Q)

↔ elem(m Ldr(X), snoc(Q, m NotNorm(Y)))
)

)

• ∀X,Y,Z,Q.(
(elem(m Ack(X,Z),Q)

↔ elem(m Ack(X,Z), snoc(Q, m Halt(Y)))
)

)

• ∀X.(
(pidElem(X)

↔ ∃Y.(
(∃Z.((X = m Ack(Y,Z)))
∨ (X = m Ldr(Y))
∨ (X = m Down(Y))
∨ (X = m Halt(Y)))

)
)

)

• ∀X.((pidMsg(m Halt(X)) = X))

• ∀X.((pidMsg(m Down(X)) = X))

• ∀X.((pidMsg(m Ldr(X)) = X))

• ∀X,Y.((pidMsg(m Ack(X,Y)) = Y))

• ordered(q nil)

174 Invariants, axioms and definitions

• ∀X.(
(ordered(cons(X, q nil))
∧ ordered(snoc(q nil,X)))

)

• ∀X,Q.(
(ordered(cons(X,Q))

↔ (∀Y.(
((elem(Y,Q)
∧ pidElem(X)
∧ pidElem(Y)
∧ (host(pidMsg(Y)) = host(pidMsg(X))))
→ (pidMsg(X) ≤ pidMsg(Y))

)
)
∧ ordered(Q))

)
)

• ∀X,Q.(
(ordered(snoc(Q,X))

↔ (∀Y.(
((elem(Y,Q)
∧ pidElem(X)
∧ pidElem(Y)
∧ (host(pidMsg(Y)) = host(pidMsg(X))))
→ (pidMsg(Y) ≤ pidMsg(X))

)
)
∧ ordered(Q))

)
)

• ∀Q,X,Y.(
((elem(m Down(Y),Q)
∧ ordered(cons(m Halt(X),Q))
∧ (host(X) = host(Y)))
→ (X ≤ Y)

)
)

• ∀Q,X,Y,Z.(
((elem(m Down(Y),Q)
∧ ordered(cons(m Ack(Z,X),Q))
∧ (host(X) = host(Y)))
→ (X ≤ Y)

)
)

A.4.4 Axioms – arith

• ∀X.((s(X) > X))

• ∀X.((X ≤ X))

A.5 – Invariants 175

• ∀X,Y.(((X ≤ Y) ∨ (Y ≤ X)))

• ∀X,Y.((((X ≤ Y) ∧ (Y ≤ X)) ↔ (X = Y)))

• ∀X,Y,Z.((((X ≤ Y) ∧ (Y ≤ Z)) → (X ≤ Z)))

• ∀X,Y.(((X ≤ Y) ↔ (s(X) ≤ s(Y))))

• ∀X,Y.(((X ≤ s(Y)) ↔ ((X ≤ Y) ∨ (X = s(Y)))))

A.4.5 Axioms – sets

• ∀X.((X /∈ setEmpty))

A.4.6 Axioms – twice-msg

• ∀M.(¬twice(q nil,M))

• ∀M,X.(¬twice(cons(X, q nil),M))

• ∀M,Y.(¬twice(snoc(q nil,Y),M))

• ∀M,X,Q.(
(twice(cons(X,Q),M)

↔ ((elem(M,Q) ∧ (M = X)) ∨ twice(Q,M))
)

)

• ∀M,Y,Q.(
(twice(snoc(Q,Y),M)

↔ ((elem(M,Q) ∧ (M = Y)) ∨ twice(Q,M))
)

)

A.5 Invariants

stoller inv1

Main invariant, if two processes (Pid1 and Pid2) are both the leader, then they are
equal. I.e. there is never more than one leader.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid))
∧ (status[host(Pid2)] = norm)
∧ (ldr[host(Pid2)] = host(Pid2)))
→ (Pid = Pid2)

)
)

Proof needs: [stoller inv5, stoller inv6, stoller inv30, stoller inv40, stoller inv50]

176 Invariants, axioms and definitions

stoller inv2

System invariant, there is never more than one process alive at a particular host.
∀Pid,Pid2.(
(((Pid 6= Pid2) ∧ (host(Pid) = host(Pid2)))

→ ((Pid /∈ alive)
∨ (Pid2 /∈ alive))

)
)

Proof needs: []

stoller inv3

Basic invariant, if a process is in state elec 2 then the value of its pendack variable is
greater than the host id.
∀Pid.(
((status[host(Pid)] = elec 2)

→ (pendack[host(Pid)] > host(Pid))
)

)
Proof needs: []

stoller inv4

Basic invariant, if a process (Pid2) is present in the acks-set of another process (Pid),
then host(Pid2) > host(Pid).
∀Pid,Pid2.(
((host(Pid2) ∈ acks[host(Pid)])

→ (host(Pid2) > host(Pid))
)

)
Proof needs: [stoller inv3]

stoller inv5

Basic invariant, If a process (Pid2) receives a Ldr-message from another process (Pid),
then host(Pid2) > host(Pid).
∀Pid,Pid2.(
(elem(m Ldr(Pid), queue(host(Pid2)))

→ (host(Pid2) > host(Pid))
)

)
Proof needs: [stoller inv3, stoller inv4]

stoller inv6

Basic invariant, if a process (Pid) is alive and in state elec 1 or elec 2 then its election-id
(elid) is exactly Pid.

A.5 – Invariants 177

∀Pid.(
((((status[host(Pid)] = elec 1)

∨ (status[host(Pid)] = elec 2))
∧ (Pid ∈ alive))
→ (elid[host(Pid)] = Pid)

)
)

Proof needs: [stoller inv2]

stoller inv7

Basic invariant, If a process (Pid2) receives a Halt-message from another process (Pid),
then host(Pid2) > host(Pid).
∀Pid,Pid2.(
(elem(m Halt(Pid), queue(host(Pid2)))

→ (host(Pid2) > host(Pid))
)

)
Proof needs: [stoller inv3]

stoller inv8

Basic invariant, In an Ack-message, the acknowledging pid (here Pid3) always has a
higher host-id. I.e. host(Pid3) > host(Pid).
∀Pid,Pid2,Pid3.(
(elem(m Ack(Pid,Pid3), queue(host(Pid2)))

→ (host(Pid3) > host(Pid))
)

)
Proof needs: [stoller inv7]

stoller inv9

Basic invariant, If a Halt-message contains a pid, that pid is also in the set pids.
∀Pid,Pid2.(
(elem(m Halt(Pid), queue(host(Pid2)))

→ (Pid ∈ pids)
)

)
Proof needs: []

stoller inv10

Basic invariant, If a process (Pid) is alive and in state elec 1, then no Halt-message
containing Pid exists.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 1))
→ ¬elem(m Halt(Pid), queue(host(Pid2)))

)
)

178 Invariants, axioms and definitions

Proof needs: [stoller inv9, stoller inv2]

stoller inv11

If a process (Pid) is alive and have sent a Halt-message to another process (Pid2) then
its pendack value is ≤ host(Pid2).
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ elem(m Halt(Pid), queue(host(Pid2))))
→ (host(Pid2) ≤ pendack[host(Pid)])

)
)

Proof needs: [stoller inv10, stoller inv9, stoller inv2]

stoller inv12

Basic invariant, If a process (Pid) is alive and in state elec 1, then no Ack-message
containing Pid exists.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 1))
→ ¬elem(m Ack(Pid,Pid2), queue(host(Pid)))

)
)

Proof needs: [stoller inv2, stoller inv10, stoller inv14]

stoller inv13

If a process (Pid) is alive and has received an Ack-message from a process (Pid2), then
pendack(Pid) ≥ host(Pid2).
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ elem(m Ack(Pid,Pid2), queue(host(Pid))))
→ (host(Pid2) ≤ pendack[host(Pid)])

)
)

Proof needs: [stoller inv2, stoller inv11, stoller inv12, stoller inv14]

stoller inv14

Basic invariant, If an Ack-message acknowledges Pid, then Pid is also in the set pids.
∀Pid,Pid2.(
(elem(m Ack(Pid,Pid2), queue(host(Pid)))

→ (Pid ∈ pids)
)

)
Proof needs: [stoller inv9]

A.5 – Invariants 179

stoller inv15

Basic invariant, If an Ack-message from a process (Pid2) exists, then Pid2 is in the set
pids.
∀Pid,Pid2.(
(elem(m Ack(Pid,Pid2), queue(host(Pid)))

→ (Pid2 ∈ pids)
)

)
Proof needs: []

stoller inv16

Basic invariant, If a process (Pid) is alive and in state elec 1, no Ack-message from Pid
exists.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 1))
→ ¬elem(m Ack(Pid2,Pid), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv15]

stoller inv17

Basic invariant, If a Down-message contains a pid, that pid is also in the set pids.
∀Pid,Pid2.(
(elem(m Down(Pid), queue(host(Pid2)))

→ (Pid ∈ pids)
)

)
Proof needs: []

stoller inv18

Basic invariant, If a Down-message contains a pid, that pid is not in the set alive.
∀Pid,Pid2.(
(elem(m Down(Pid), queue(host(Pid2)))

→ (Pid /∈ alive)
)

)
Proof needs: [stoller inv17]

stoller inv19

System invariant, given two pids from the same host, if the larger pid is not alive, neither
is the smaller one. I.e. new pids are always larger.

180 Invariants, axioms and definitions

∀Pid,Pid2.(
(((Pid2 /∈ alive)
∧ (Pid ≤ Pid2)
∧ (host(Pid) = host(Pid2)))
→ (Pid /∈ alive)

)
)

Proof needs: [stoller inv2]

stoller inv20

Basic invariant, Down-messages are only sent to processes on other nodes.
∀Pid,Pid2.(
(elem(m Down(Pid), queue(host(Pid2)))

→ (host(Pid) 6= host(Pid2))
)

)
Proof needs: [stoller inv2]

stoller inv21

Basic invariant, If a process (Pid) is alive and in state elec 2, then no Ack-message
containing Pid as the acknowledging part exists.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 2))
→ ¬elem(m Ack(Pid2,Pid), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv15, stoller inv16]

stoller inv22

If there are two processes alive, and both are in state elec 2,no Ack-message from one
of the processes to the other process exists.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ (Pid3 ∈ alive)
∧ (host(Pid) = host(Pid2))
∧ (status[host(Pid)] = elec 2)
∧ (status[host(Pid3)] = elec 2))
→ ¬elem(m Ack(Pid3,Pid2), queue(host(Pid3)))

)
)

Proof needs: [stoller inv2, stoller inv8, stoller inv12, stoller inv14, stoller inv59]

stoller inv23

If there are two processes alive (Pid and Pid3), both in state elec 2, no Down-message
from host(Pid) to host(Pid3) exists. (Pid > Pid3).

A.5 – Invariants 181

∀Pid,Pid2,Pid3.(
(((host(Pid) > host(Pid3))
∧ (Pid ∈ alive)
∧ (Pid3 ∈ alive)
∧ (host(Pid) = host(Pid2))
∧ (status[host(Pid)] = elec 2))
→ ¬elem(m Down(Pid2), queue(host(Pid3)))

)
)

Proof needs: [stoller inv2, stoller inv17, stoller inv26, stoller inv27, stoller inv60]

stoller inv24

The highest prioritized process does not receive Halt-messages.
∀Pid,Pid2.(
((host(Pid) = s(zero))

→ ¬elem(m Halt(Pid2), queue(host(Pid)))
)

)
Proof needs: []

stoller inv25

The highest prioritized process does not send Ack-messages.
∀Pid,Pid2.(
((host(Pid) = s(zero))

→ ¬elem(m Ack(Pid2,Pid), queue(host(Pid2)))
)

)
Proof needs: [stoller inv24]

stoller inv26

If there are two processes alive (Pid2 and Pid4) then there can not be a Down-message
from BOTH host(Pid2) and host(Pid4) to host(Pid4) and host(Pid2) respectively.
∀Pid,Pid2,Pid3,Pid4.(
(((host(Pid2) 6= host(Pid4))
∧ (Pid2 ∈ alive)
∧ (Pid4 ∈ alive)
∧ (host(Pid) = host(Pid2))
∧ (host(Pid3) = host(Pid4)))
→ ¬(elem(m Down(Pid), queue(host(Pid4)))

∧ elem(m Down(Pid3), queue(host(Pid2))))
)

)
Proof needs: [stoller inv2]

stoller inv27

If there are two processes alive (Pid2 and Pid4), then it can not be the case that
host(Pid4) is in the acks-set of Pid2 at the same time as there is a Down-message

182 Invariants, axioms and definitions

enroute from host(Pid2) to host(Pid4).
∀Pid,Pid2,Pid3,Pid4.(
(((host(Pid2) 6= host(Pid4))
∧ (Pid2 ∈ alive)
∧ (Pid4 ∈ alive)
∧ (host(Pid) = host(Pid2))
∧ (host(Pid3) = host(Pid4)))
→ ¬(elem(m Down(Pid), queue(host(Pid4)))

∧ (host(Pid3) ∈ down[host(Pid2)]))
)

)
Proof needs: [stoller inv2, stoller inv26]

stoller inv28

If a process (Pid) is alive, then no Down-message containing Pid exists.
∀Pid,Pid2.(
((Pid ∈ alive)

→ ¬elem(m Down(Pid), queue(host(Pid2)))
)

)
Proof needs: [stoller inv17]

stoller inv30

If a process (Pid) is in state elec 2 and is waiting for the last Ack-message to complete
the election, and this Ack-message is actually in Pid’s queue, then no other process
(Pid3) is currently the leader.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Ack(Pid,Pid2), queue(host(Pid)))
∧ (nbr proc ≤ pendack[host(Pid)])
∧ (status[host(Pid)] = elec 2)
∧ (host(Pid2) = pendack[host(Pid)]))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv2, stoller inv5, stoller inv12, stoller inv13, stoller inv14, stoller -
inv31, stoller inv32, stoller inv33, stoller inv51]

stoller inv31

If Pid is in state elec 2 and have a pendack value greater than host(Pid3) and there is
a Halt-message from Pid to some process, then no other process (Pid3) is a leader.

A.5 – Invariants 183

∀Pid,Pid2,Pid3.(
(((pendack[host(Pid)] > host(Pid3))
∧ (Pid ∈ alive)
∧ elem(m Halt(Pid), queue(host(Pid2)))
∧ (status[host(Pid)] = elec 2))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv5, stoller inv6, stoller inv7, stoller inv8, stoller inv36, stoller -
inv38, stoller inv39, stoller inv40, stoller inv53, stoller inv57, stoller inv1]

stoller inv32

If a process (Pid2) has sent an Ack-message to another process (Pid) and a Down-
message from host(Pid) is in Pid2’s queue, then Pid is not alive.
∀Pid,Pid2,Pid3.(
((elem(m Down(Pid3), queue(host(Pid2)))
∧ elem(m Ack(Pid,Pid2), queue(host(Pid)))
∧ (host(Pid) = host(Pid3)))
→ (Pid /∈ alive)

)
)

Proof needs: [stoller inv8, stoller inv18, stoller inv74, stoller inv75]

stoller inv33

If two processes are alive (Pid and Pid2) and there is a Ack-message from host(Pid2) in
Pid’s queue, then host(Pid) is not in the down-set of Pid2.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ elem(m Ack(Pid,Pid3), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3)))
→ (host(Pid) /∈ down[host(Pid2)])

)
)

Proof needs: [stoller inv14, stoller inv32]

stoller inv36

If a process is alive and has received an Ack-message from a process on another host,
then no process on that host is currently a leader.

184 Invariants, axioms and definitions

∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Ack(Pid,Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3)))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv5, stoller inv8, stoller inv14, stoller inv32, stoller inv33, stoller -
inv45]

stoller inv38

If a process is alive and has received a Down-message from a process on another host,
then no process on that host is currently a leader.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3)))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv20, stoller inv26, stoller -
inv27, stoller inv32, stoller inv55, stoller inv58a]

stoller inv39

The pendack value for a process is always ≤ nbr proc.
∀Pid.((pendack[host(Pid)] ≤ nbr proc))

Proof needs: []

stoller inv40

If a process is alive and has received a Down-message that makes lesser(Pid) a subset
of down(Pid), then no process at a higher prioritized node is currently a leader.
∀Pid,Pid2,Pid3.(
(((host(Pid) > host(Pid3))
∧ (Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (lesser(host(Pid)) ⊆

(down[host(Pid)] ∪ {host(Pid2)}))
∧ (status[host(Pid)] = elec 1))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

A.5 – Invariants 185

Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv20, stoller inv26, stoller -
inv27, stoller inv32, stoller inv33, stoller inv58a, stoller inv58b, stoller inv66, stoller -
inv67]

stoller inv41

If a process (Pid) is alive and in state elec 2 and has received a Down-message from a
process (Pid2) at a node with lower priority, then no process on that node is alive and
in state elec 2.
∀Pid,Pid2,Pid3.(
(((host(Pid2) > host(Pid))
∧ (Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3))
∧ (status[host(Pid)] = elec 2))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = elec 2))
)

)
Proof needs: [stoller inv2, stoller inv3, stoller inv26, stoller inv27, stoller inv58a]

stoller inv42

If a process is the leader, then its election id is exactly the pid.
∀Pid.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid)))
→ (elid[host(Pid)] = Pid)

)
)

Proof needs: [stoller inv5, stoller inv6]

stoller inv43

NormQ-messages are only sent to processes with lower priority.
∀Pid,Pid2.(
(elem(m NormQ(Pid), queue(host(Pid2)))

→ (host(Pid2) > host(Pid))
)

)
Proof needs: [stoller inv42]

stoller inv44

A process at the lowest prioritized host does never receive a NotNorm-message.
∀Pid,Pid2.(
((host(Pid) = nbr proc)

→ ¬elem(m NotNorm(Pid2), queue(host(Pid)))
)

)

186 Invariants, axioms and definitions

Proof needs: [stoller inv43]

stoller inv45

If a process (Pid) is alive and in state elec 2, then no process at a host with higherpriority
has node(Pid) in its down-set.
∀Pid,Pid2.(
(((host(Pid) > host(Pid2))
∧ (Pid ∈ alive)
∧ (status[host(Pid)] = elec 2))
→ (host(Pid2) ∈ down[host(Pid)])

)
)

Proof needs: []

stoller inv50

If a process (Pid) is alive, in state elec 2, waiting for a reply from the host with lowest
priority and have a Down-reply in its queue, then no other process is a leader.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (nbr proc ≤ pendack[host(Pid)])
∧ (status[host(Pid)] = elec 2)
∧ (host(Pid2) = pendack[host(Pid)]))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv1, stoller inv5, stoller inv6, stoller inv14, stoller inv51, stoller -
inv52, stoller inv53, stoller inv54, stoller inv55, stoller inv56]

stoller inv51

If two processes (Pid and Pid2) are alive and in state elec 2, and host(Pid) < host(Pid2),
then the pendack value of Pid2 is larger than the pendack value of Pid.
∀Pid,Pid2.(
(((host(Pid2) > host(Pid))
∧ (Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (status[host(Pid)] = elec 2)
∧ (status[host(Pid2)] = elec 2))
→ (pendack[host(Pid2)] > pendack[host(Pid)])

)
)

Proof needs: [stoller inv3, stoller inv6, stoller inv22, stoller inv57, stoller inv58a, sto-
ller inv58b]

A.5 – Invariants 187

stoller inv52

If a process (Pid) is alive, in state elec 2 and waiting for an Ack-message from the second
last process, then if this message is in its queue and there is also a Down-message from
the last process in the queue (i.e. Pid can become leader without further communica-
tion) then no other process is currently a leader.
∀Pid,Pid2,Pid3,Pid4.(
(((Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ elem(m Ack(Pid,Pid3), queue(host(Pid)))
∧ (nbr proc ≤ s(pendack[host(Pid)]))
∧ (status[host(Pid)] = elec 2)
∧ (host(Pid3) = pendack[host(Pid)])
∧ (host(Pid2) = s(pendack[host(Pid)])))
→ ¬((Pid4 ∈ alive)

∧ (status[host(Pid4)] = norm)
∧ (ldr[host(Pid4)] = host(Pid4)))

)
)

Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv12, stoller inv14, stoller -
inv20, stoller inv22, stoller inv13, stoller inv31, stoller inv36, stoller inv38, stoller -
inv53, stoller inv55, stoller inv57]

stoller inv53

If a process (Pid) is alive and in state elec 2, then no process (Pid2) with host(Pid2) <
pendack(Pid) is currently a leader.
∀Pid,Pid2.(
(((pendack[host(Pid)] > host(Pid2))
∧ (Pid ∈ alive)
∧ (status[host(Pid)] = elec 2))
→ ¬((Pid2 ∈ alive)

∧ (status[host(Pid2)] = norm)
∧ (ldr[host(Pid2)] = host(Pid2)))

)
)

Proof needs: [stoller inv5, stoller inv6, stoller inv22, stoller inv36, stoller inv57, stoller -
inv58a, stoller inv58b, stoller inv66, stoller inv67]

stoller inv54

If a process (Pid) is alive, in state elec 2 and has received a Down-message from a process
on another host, then no process on that host is currently a leader.

188 Invariants, axioms and definitions

∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3))
∧ (status[host(Pid)] = elec 2))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv32, stoller inv38, stoller -
inv41, stoller inv55, stoller inv57]

stoller inv55

If a process (Pid) on the host with lowest priority is alive, in state elec 1 and have a
Down-message in its queue that makes the down-set complete, then no other process is
alive that has a Down-message from host(Pid).
∀Pid,Pid2,Pid3,Pid4.(
(((Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (lesser(host(Pid)) ⊆

(down[host(Pid)] ∪ {host(Pid2)}))
∧ (host(Pid) = nbr proc)
∧ (host(Pid) = host(Pid3))
∧ (status[host(Pid)] = elec 1))
→ ¬((Pid4 ∈ alive)

∧ elem(m Down(Pid3), queue(host(Pid4))))
)

)
Proof needs: [stoller inv2, stoller inv5, stoller inv20, stoller inv26, stoller inv27, stoller -
inv40, stoller inv44, stoller inv61]

stoller inv56

A lot like 52, but here there are two Down-messages instead of one Down and one Ack
i.e. a process is waiting for a message from the second last process and have this message
in its queue. That is Pid can become leader without further communication.

A.5 – Invariants 189

∀Pid,Pid2,Pid3,Pid4.(
(((Pid ∈ alive)
∧ (nbr proc ≤ s(host(Pid)))
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ elem(m Down(Pid3), queue(host(Pid)))
∧ (lesser(host(Pid)) ⊆

(down[host(Pid)] ∪ {host(Pid2)}))
∧ (host(Pid3) = s(host(Pid)))
∧ (status[host(Pid)] = elec 1))
→ ¬((Pid4 ∈ alive)

∧ (status[host(Pid4)] = norm)
∧ (ldr[host(Pid4)] = host(Pid4)))

)
)

Proof needs: [stoller inv1, stoller inv2, stoller inv5, stoller inv6, stoller inv14, stoller -
inv20, stoller inv26, stoller inv27, stoller inv58a, stoller inv58b, stoller inv59, stoller -
inv63, stoller inv64, stoller inv65, stoller inv66, stoller inv67]

stoller inv57

If two processes (Pid and Pid2) are alive and in state elec 2, then the pendack value of
the one highest priority (Pid) is less than or equal to host(Pid2)
∀Pid,Pid2.(
(((host(Pid2) > host(Pid))
∧ (Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (status[host(Pid)] = elec 2)
∧ (status[host(Pid2)] = elec 2))
→ (pendack[host(Pid)] ≤ host(Pid2))

)
)

Proof needs: [stoller inv6, stoller inv22, stoller inv23, stoller inv58a, stoller inv58b]

stoller inv58a

If Pid and Pid3 are alive, Pid is in state elec 2 and there is a Down-message from
host(Pid) in Pid3’s queue, then the pendack value of Pid is less than or equal to
host(Pid3).
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ (Pid3 ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid3)))
∧ (host(Pid) = host(Pid2))
∧ (status[host(Pid)] = elec 2))
→ (pendack[host(Pid)] ≤ host(Pid3))

)
)

Proof needs: [stoller inv6, stoller inv20, stoller inv26, stoller inv27, stoller inv32]

190 Invariants, axioms and definitions

stoller inv58b

If Pid and Pid2 are alive, Pid is in state elec 2 and host(Pid) is in the down-set of Pid2,
then the pendack value of Pid is less than or equal to host(Pid2).
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (host(Pid) ∈ down[host(Pid2)])
∧ (status[host(Pid)] = elec 2))
→ (pendack[host(Pid)] ≤ host(Pid2))

)
)

Proof needs: [stoller inv6, stoller inv20, stoller inv27, stoller inv33, stoller inv58a, sto-
ller inv70]

stoller inv59

If two processes (Pid and Pid4) are alive, Pid is in state elec 1 and Pid4 is in state elec 2
and Pid has the last Down-message it needs to go to state elec 2 in its queue, then there
is no Ack-message from host(Pid) in the queue of Pid4.
∀Pid,Pid2,Pid3,Pid4.(
(((Pid ∈ alive)
∧ (Pid4 ∈ alive)
∧ (host(Pid4) ≤ host(Pid))
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (lesser(host(Pid)) ⊆

(down[host(Pid)] ∪ {host(Pid2)}))
∧ (host(Pid3) = host(Pid))
∧ (status[host(Pid)] = elec 1)
∧ (status[host(Pid4)] = elec 2))
→ ¬elem(m Ack(Pid4,Pid3), queue(host(Pid4)))

)
)

Proof needs: [stoller inv2, stoller inv14, stoller inv16, stoller inv26, stoller inv27, sto-
ller inv32, stoller inv33, stoller inv58a]

stoller inv60

If a process (Pid) is the leader, then no process (Pid2) with lower priority is alive and
in state elec 2.
∀Pid,Pid2.(
(((host(Pid2) > host(Pid))
∧ (Pid ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid)))
→ ¬((Pid2 ∈ alive)

∧ (status[host(Pid2)] = elec 2))
)

)
Proof needs: [stoller inv5, stoller inv6, stoller inv22, stoller inv23, stoller inv40, stoller -
inv57]

A.5 – Invariants 191

stoller inv61

If a process (Pid) have a leader (Pid2) then there are no Down-messages from host(Pid)
in Pid2’s queue.
∀Pid,Pid2,Pid3.(
(((host(Pid) 6= host(Pid2))
∧ (Pid ∈ alive)
∧ (host(Pid) = host(Pid3))
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid2)))
→ ¬elem(m Down(Pid3), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv71]

stoller inv63

If a process (Pid) have a leader (Pid2) and there is a Down-messge in the queue of Pid
from a process at host(Pid2) the Pid2 is no longer the leader.
∀Pid,Pid2,Pid3.(
(((host(Pid) 6= host(Pid2))
∧ (Pid ∈ alive)
∧ elem(m Down(Pid3), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3))
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid2)))
→ ¬((Pid2 ∈ alive)

∧ (status[host(Pid2)] = norm)
∧ (ldr[host(Pid2)] = host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv27, stoller inv32, stoller -
inv61, stoller inv64, stoller inv87, stoller inv88]

stoller inv64

If a process (Pid) is waiting for a Ldr-message from another process (Pid2) and there is
a Down-message from host(Pid2) in Pid’s queue, then Pid2 is not the leader.
∀Pid,Pid2,Pid3.(
(((host(Pid) 6= host(Pid2))
∧ (Pid ∈ alive)
∧ elem(m Down(Pid3), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3))
∧ (status[host(Pid)] = wait)
∧ (host(elid[host(Pid)]) = host(Pid2)))
→ ¬((Pid2 ∈ alive)

∧ (status[host(Pid2)] = norm)
∧ (ldr[host(Pid2)] = host(Pid2)))

)
)

192 Invariants, axioms and definitions

Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv26, stoller inv27, stoller -
inv32, stoller inv58a, stoller inv66]

stoller inv65

If a process (Pid) is alive and has a Down-message from a lower prioritized host in its
queue, then no process on that host is currently the leader.
∀Pid,Pid2,Pid3.(
(((host(Pid2) > host(Pid))
∧ (Pid ∈ alive)
∧ elem(m Down(Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3)))
→ ¬((Pid3 ∈ alive)

∧ (status[host(Pid3)] = norm)
∧ (ldr[host(Pid3)] = host(Pid3)))

)
)

Proof needs: [stoller inv2, stoller inv5, stoller inv23, stoller inv26, stoller inv27]

stoller inv66

If a process (Pid) is the leader, then there is no other Process (Pid3) that is both alive
and has a Down-message from a process on host(Pid).
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ (host(Pid2) = host(Pid))
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid)))
→ ¬((Pid3 ∈ alive)

∧ elem(m Down(Pid2), queue(host(Pid3))))
)

)
Proof needs: [stoller inv2, stoller inv5, stoller inv6, stoller inv20, stoller inv26, stoller -
inv27, stoller inv32, stoller inv87, stoller inv88]

stoller inv67

If a process (Pid) is the leader, then there is no other Process (Pid2) that is both alive
and has host(Pid) in its down-set.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid)))
→ ¬((Pid2 ∈ alive)

∧ (host(Pid) ∈ down[host(Pid2)]))
)

)
Proof needs: [stoller inv3, stoller inv5, stoller inv6, stoller inv20, stoller inv27, stoller -
inv33, stoller inv66, stoller inv70, stoller inv88, stoller inv89]

A.5 – Invariants 193

stoller inv68

If a process is the leader and process (Pid2) with higher priority is alive, then Pid2 is
not in state elec 2 with a pendac value greater than host(Pid).
∀Pid,Pid2.(
(((host(Pid) > host(Pid2))
∧ (Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (status[host(Pid)] = norm)
∧ (ldr[host(Pid)] = host(Pid)))
→ ¬((pendack[host(Pid2)] > host(Pid))

∧ (status[host(Pid2)] = elec 2))
)

)
Proof needs: [stoller inv5, stoller inv6, stoller inv36, stoller inv38, stoller inv57, stoller -
inv58a, stoller inv58b]

stoller inv69

The down-set of a process (Pid) never contains host(Pid).
∀Pid.(
(host(Pid) /∈ down[host(Pid)])

)
Proof needs: [stoller inv20]

stoller inv70

If two processes (Pid and Pid2) are alive, then it is not the case that they both have
each other in their down-sets.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (host(Pid2) ∈ down[host(Pid)]))
→ (host(Pid) /∈ down[host(Pid2)])

)
)

Proof needs: [stoller inv20, stoller inv27]

stoller inv71

If a process (Pid) is waiting for another process (Pid2) and a Ldr-message from Pid2 is
in Pid’s queue, then Pid2 does not have a Down-message from host(Pid) in its queue.

194 Invariants, axioms and definitions

∀Pid,Pid2,Pid3.(
(((host(Pid) 6= host(Pid2))
∧ (Pid ∈ alive)
∧ elem(m Ldr(elid[host(Pid)]), queue(host(Pid)))
∧ (host(Pid) = host(Pid3))
∧ (status[host(Pid)] = wait)
∧ (host(elid[host(Pid)]) = host(Pid2)))
→ ¬elem(m Down(Pid3), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv6, stoller inv17, stoller inv18, stoller inv72, stoller -
inv73, stoller inv75, stoller inv102, stoller inv103]

stoller inv72

If a process (Pid) is alive and has a Halt-message from Pid2 in its queue, then no Ldr-
message from host(Pid2) is in Pid’s queue.
∀Pid,Pid2,Pid4.(
(((Pid2 ≤ Pid4)
∧ (Pid ∈ alive)
∧ elem(m Halt(Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid4)))
→ ¬elem(m Ldr(Pid4), queue(host(Pid)))

)
)

Proof needs: [stoller inv6, stoller inv8, stoller inv75, stoller inv76, stoller inv77, stoller -
inv78, stoller inv79, stoller inv80, stoller inv102]

stoller inv73

If a process (Pid) is waiting for another process (Pid2) and host(Pid) is in Pid2’s ack-set,
then Pid2 does not have a Down-message from host(Pid) in its queue.
∀Pid,Pid2,Pid3.(
(((host(Pid) 6= host(Pid2))
∧ (Pid ∈ alive)
∧ (host(Pid) ∈ acks[host(Pid2)])
∧ (host(Pid) = host(Pid3))
∧ (status[host(Pid)] = wait)
∧ (host(elid[host(Pid)]) = host(Pid2)))
→ ¬elem(m Down(Pid3), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv4, stoller inv6, stoller inv8, stoller inv17, stoller -
inv18, stoller inv75, stoller inv77, stoller inv102, stoller inv103]

stoller inv74

On a host, if a process (Pid) is alive, then no other process (Pid2) with a larger process
id exists.

A.5 – Invariants 195

∀Pid,Pid2.(
(((Pid ∈ alive) ∧ (host(Pid) = host(Pid2)))

→ (Pid2 ≤ Pid)
)

)
Proof needs: []

stoller inv75

The message queue for a process is always ordered.
∀Pid.(ordered(queue(host(Pid))))

Proof needs: [stoller inv74]

stoller inv76

If a Ldr-message contains Pid, then Pid is in the pids-set.
∀Pid,Pid2.(
(elem(m Ldr(Pid), queue(host(Pid2)))

→ (Pid ∈ pids)
)

)
Proof needs: [stoller inv81]

stoller inv77

If a Halt-message containing Pid is in the queue of Pid2, then host(Pid2) is not in the
acks-set of Pid.
∀Pid,Pid2.(
(elem(m Halt(Pid), queue(host(Pid2)))

→ (host(Pid2) /∈ acks[host(Pid)])
)

)
Proof needs: [stoller inv6, stoller inv9, stoller inv78, stoller inv82, stoller inv102]

stoller inv78

If a Halt-message containing Pid is in the queue of Pid2, then there is no Ack-message
containing Pid2 in Pid2’s queue from an earlier incarnation of Pid.
∀Pid,Pid2,Pid3.(
(((Pid ≤ Pid3)
∧ elem(m Halt(Pid), queue(host(Pid2)))
∧ (host(Pid) = host(Pid3)))
→ ¬elem(m Ack(Pid3,Pid2), queue(host(Pid3)))

)
)

Proof needs: [stoller inv7, stoller inv8, stoller inv12, stoller inv13, stoller inv14, stoller -
inv75, stoller inv83, stoller inv102]

196 Invariants, axioms and definitions

stoller inv79

If a process (Pid) is alive and in state elec 2, then no Ldr-message containing Pid exists.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 2))
→ ¬elem(m Ldr(Pid), queue(host(Pid2)))

)
)

Proof needs: [stoller inv42, stoller inv76, stoller inv80]

stoller inv80

If a process (Pid) is alive and in state elec 1, then no Ldr-message containing Pid exists.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 1))
→ ¬elem(m Ldr(Pid), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv42, stoller inv76]

stoller inv81

If a process (Pid) is alive and in state elec 2, then Pid is in the pids-set.
∀Pid.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 2))
→ (Pid ∈ pids)

)
)

Proof needs: [stoller inv2]

stoller inv82

If a process (Pid) is alive and in state elec 2 and the pendack value of Pid is less than
or equal to host(Pid2), then host(Pid2) is not in Pid’s acks-set.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (pendack[host(Pid)] ≤ host(Pid2))
∧ (status[host(Pid)] = elec 2))
→ (host(Pid2) /∈ acks[host(Pid)])

)
)

Proof needs: []

A.5 – Invariants 197

stoller inv83

There are never two Halt-messages with the same Pid in a queue.
∀Pid,Pid2.(
¬twice(queue(host(Pid)), m Halt(Pid2))

)
Proof needs: [stoller inv9, stoller inv10, stoller inv84]

stoller inv84

If a process (Pid) is alive, in state elec 2 and has sent a Halt-message to Pid2, then
host(Pid2) is less than or equal to the pendack value of Pid.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ elem(m Halt(Pid), queue(host(Pid2)))
∧ (status[host(Pid)] = elec 2))
→ (host(Pid2) ≤ pendack[host(Pid)])

)
)

Proof needs: [stoller inv2, stoller inv9, stoller inv10]

stoller inv87

If a process (Pid) is alive, in state elec 2 and has host(Pid3) in its acks-set, then no
Down-message from host(Pid) is in Pid3’s queue.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ (host(Pid3) ∈ acks[host(Pid)])
∧ (host(Pid) = host(Pid2))
∧ (status[host(Pid)] = elec 2))
→ ¬elem(m Down(Pid2), queue(host(Pid3)))

)
)

Proof needs: [stoller inv6, stoller inv32]

stoller inv88

If a process (Pid) is alive and in state elec 2, then lesser(Pid) minus host(Pid) is a subset
of the union of Pid’s down-set and acks-set.
∀Pid.(
(((Pid ∈ alive)
∧ (status[host(Pid)] = elec 2))
→ ((lesser(pendack[host(Pid)])− {host(Pid)}) ⊆

(down[host(Pid)] ∪ acks[host(Pid)]))
)

)
Proof needs: []

198 Invariants, axioms and definitions

stoller inv89

If a process (Pid) is alive, in state elec 2, has host(Pid2) in its acks-set and Pid2 is alive,
then host(Pid) is not in Pid2’s down-set.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ (host(Pid2) ∈ acks[host(Pid)])
∧ (status[host(Pid)] = elec 2))
→ (host(Pid) /∈ down[host(Pid2)])

)
)

Proof needs: [stoller inv6, stoller inv33, stoller inv87]

stoller inv90

If a process (Pid) is waiting for another process (Pid2) and a Ldr-message from Pid2 is
in Pid’s queue, then there is no Ack-message from host(Pid) in Pid2’s queue.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Ldr(Pid2), queue(host(Pid)))
∧ (host(Pid) = host(Pid3))
∧ (elid[host(Pid)] = Pid2)
∧ (status[host(Pid)] = wait))
→ ¬elem(m Ack(Pid2,Pid3), queue(host(Pid2)))

)
)

Proof needs: [stoller inv6, stoller inv72, stoller inv93, stoller inv94, stoller inv103]

stoller inv93

No queue contains two identical Ack-messages.
∀Pid,Pid2.(
¬twice(queue(host(Pid)), m Ack(Pid,Pid2))

)
Proof needs: [stoller inv96]

stoller inv94

If a process (Pid) is alive, in state elec 2 and has host(Pid2) in its acks-set, then no
Ack-message from Pid2 is in Pid’s queue.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (host(Pid2) ∈ acks[host(Pid)])
∧ (status[host(Pid)] = elec 2))
→ ¬elem(m Ack(Pid,Pid2), queue(host(Pid)))

)
)

Proof needs: [stoller inv6, stoller inv8, stoller inv93, stoller inv97, stoller inv104]

A.5 – Invariants 199

stoller inv95

If a process (Pid) is waiting for another process (Pid2) and a Ldr-message from Pid2 is
in Pid’s queue, then there is no Down-message from host(Pid) in Pid2’s queue.
∀Pid,Pid2,Pid3.(
(((Pid ∈ alive)
∧ elem(m Ldr(Pid2), queue(host(Pid)))
∧ (host(Pid) = host(Pid3))
∧ (elid[host(Pid)] = Pid2)
∧ (status[host(Pid)] = wait))
→ ¬elem(m Down(Pid3), queue(host(Pid2)))

)
)

Proof needs: [stoller inv2, stoller inv6, stoller inv17, stoller inv18, stoller inv72, stoller -
inv73, stoller inv75, stoller inv102, stoller inv103]

stoller inv96

Between a pair of processes, there is never both an Ack-message and a Halt-message in
the respective queues.
∀Pid,Pid2.(
¬(elem(m Halt(Pid), queue(host(Pid2)))
∧ elem(m Ack(Pid,Pid2), queue(host(Pid))))

)
Proof needs: [stoller inv8, stoller inv12, stoller inv13, stoller inv14, stoller inv83]

stoller inv97

If a process (Pid) is alive, in state elec 2 and has host(Pid2) in its acks-set, then no
Halt-message from Pid is in Pid2’s queue.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (host(Pid2) ∈ acks[host(Pid)])
∧ (status[host(Pid)] = elec 2))
→ ¬elem(m Halt(Pid), queue(host(Pid2)))

)
)

Proof needs: [stoller inv6, stoller inv96, stoller inv98]

stoller inv98

If a process (Pid) is alive, in state elec 2 and has host(Pid2) in its acks-set, then
host(Pid2) is less than or equal to Pid’s pendack value.
∀Pid,Pid2.(
(((Pid ∈ alive)
∧ (host(Pid2) ∈ acks[host(Pid)])
∧ (status[host(Pid)] = elec 2))
→ (host(Pid2) ≤ pendack[host(Pid)])

)
)

Proof needs: []

200 Invariants, axioms and definitions

stoller inv102

Given two processes on the same host where Pid < Pid2, if Pid2 is in the pids-set, then
Pid is not alive.
∀Pid,Pid2.(
(((Pid2 > Pid)
∧ (Pid2 ∈ pids)
∧ (host(Pid) = host(Pid2)))
→ (Pid /∈ alive)

)
)

Proof needs: [stoller inv2]

stoller inv103

If a process (Pid2) is waiting for another process (Pid) and there is an Ack-message
from Pid3 (where host(Pid2) = host(Pid3)) in Pid’s queue, then Pid2 = Pid3.
∀Pid,Pid2,Pid3.(
(((host(Pid2) 6= host(Pid))
∧ (Pid ∈ alive)
∧ (Pid2 ∈ alive)
∧ elem(m Ack(Pid,Pid3), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3))
∧ (status[host(Pid2)] = wait)
∧ (host(elid[host(Pid2)]) = host(Pid)))
→ (Pid2 = Pid3)

)
)

Proof needs: [stoller inv2, stoller inv9, stoller inv14, stoller inv78, stoller inv102]

stoller inv104

There are never two Ack-messages in one queue, which acknowledges the same process

(Pid), from two different process (Pid2 and Pid3) on the same host.

∀Pid,Pid2,Pid3.(
(((Pid2 6= Pid3)
∧ elem(m Ack(Pid,Pid2), queue(host(Pid)))
∧ (host(Pid2) = host(Pid3)))
→ ¬elem(m Ack(Pid,Pid3), queue(host(Pid)))

)
)

Proof needs: [stoller inv3, stoller inv14, stoller inv15]

