
A Semantics for Distributed Erlang

Koen Claessen
Dept. of Computing Science

Chalmers University of Technology
Gothenburg, Sweden
koen@cs.chalmers.se

Hans Svensson
Dept. of Computing Science

Chalmers University of Technology
Gothenburg, Sweden

hanssv@cs.chalmers.se

Abstract
We propose an extension to Fredlund’s formal semantics for Erlang
that models the concept of nodes. The motivation is that there exist
sequences of events that can occur in practice, but are impossible
to describe using a single-node semantics, such as Fredlund’s.
The consequence is that some errors in distributed systems might
not be detected by model checkers based on Fredlund’s original
semantics, or by other single-node verification techniquessuch as
testing. Our extension is modest; it re-uses most of Fredlund’s work
but adds an extra layer at the top-level.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]

General Terms Languages, Theory, Verification

Keywords Erlang, semantics, distributed systems, verification

1. Introduction
Most software written in Erlang is running in distributed envi-
ronments, and is often highly concurrent and dynamic in nature.
Experience shows that such software is inherently hard to write,
test and verify. Several approaches have been proposed for testing
[6, 7, 8, 18, 5] and formally verifying [16, 15, 3] Erlang programs.
One important aspect in the work with verification techniques such
as model checking is a formal semantics for Erlang.

Fredlund [12] proposes a formal semantics for Erlang, whichis
described in more detail in [13]. Fredlund’s semantics is a small-
step operational semantics that is simple, easy to understand and
constructed in a layered fashion. The semantics has been used as a
basis in several different verfication projects, such as semi-formal
verification of Erlang code [14] and model checking a resource
manager [15]. Fredlund’s semantics has also been a basis forthe
development of a theorem prover [15] and a translation of Erlang
into a language that can be model checked [4].

Recently, we discovered two previously undiscovered errors in
an open source Erlang implementation of a leader election algo-
rithm [19, 5]. Both errors where caused by chains of events not
foreseen by the designer, and were related to message arrival order
in the distributed environment. As we later show with examples,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’05 September 25, 2005, Tallinn, Estonia.
Copyright c© 2005 ACM 1-59593-066-3/05/0009. . . $5.00.

using message passing in a distributed Erlang system requires at
least some extra thought — it is not always obvious to know what
the possible chains of events are in a situations where several pro-
cesses are sending messages to each other. Especially, messages do
not always arrive in the expected, intuitive order.

What could be more appropriate than to apply a model checker
in this situation? A model checker would be able to prove that, even
in unforeseen chains of events, the desired properties of the system
still hold. However, such a model checker needs to be aware ofwhat
the possible chains of events actually are. For this to work properly,
actual chains of events that can happen should be reflected bythe
underlying semantics that the model checker uses.

The errors we found in the leader election implementation were
both specific to amulti-node setting. This means that the chains
of events that exposed the errors can only occur when different
parts of the system run on different nodes. Thus, contrary tothe
the Erlang idea that distribution should be transparent, there exist
a real behavioural difference between systems where all processes
run on the same node, and between systems where processes run
on different nodes.

Unfortunately, Fredlund’s Erlang semantics is also unableto
foresee the chains of events that lead to the errors. The reason is
that Fredlund’s semantics does not contain the concept of nodes.
All systems described in Fredlund’s semantics are localized to the
same runtime system, which is the reason why we will call his
semantics asingle-nodesemantics.

Message passing in Erlang is normally thought of to work sim-
ilarily in a local and a distributed setting. However, Erlang mes-
sage passing actually behaves slightly different in a localsetting
compared to the distributed setting. Since Fredlund’s single-node
semantics does not contain this distinction, it is impossible to faith-
fully model certain distributed systems.

Contributions The first contribution of this paper to the
Erlang community is a warning: The behaviour of message passing
between processes running on the same node is limited compared to
processes on different nodes. This is moreover not just a theoreticl
remark; we have found a real-life example where this actually
matters. This leads to two conclusions: (1) When formally verifying
Erlang systems (intended to run in a distributed setting) using a
model checker based on a single-node semantics, there mightbe
errors that slip through. But also, (2) when testing Erlang systems
(intended to run in a distributed setting) using a single runtime
system containing all processes, there might be errors thatslip
through.

The second contribution is a proposal to add one more layer on
top of Fredlund’s single-node semantics that formally descibes the
concept of nodes, message passing between nodes, and the node
linking mechanism. The hope is that this new semantics can bethe
formal basis for future model checkers for Erlang.

Summary Sect. 2 contains an introduction to Fredlund’s
single-node semantics. In Sect. 3 we present some motivating ex-
amples, as well as a description of situations where Fredlund’s Er-
lang semantics lacks expressive power. In Sect. 4 we providean ex-
tension to Fredlund’s semantics, where we add another layeron top
of the existing semantics in order to introduce the full distributed
behavior. Some of the design decisions in the extended semantics
is discussed in Sect. 5, related approaches to the problem are de-
scribed in Sect. 6 and we conclude in Sect. 7.

2. Original semantics
In [13], Fredlund gives a complete presentation of a small-step op-
erational semantics for Erlang. Here we will highlight someof the
most important aspects, with enough details to be able to under-
stand the presentation of the extended semantics. Fredlund’s single-
node semantics is presented for a subset of Erlang, that is inshort
standard Erlang without: modules, nodes, floats, references, bina-
ries, ports and the catch-expression. Some of the process’ internal
state has also been omitted: there are no process dictionaries, no
group leader or processes groups and name-registration forpro-
cesses is not included.

All definitions and rules presented in this section are takenfrom
Fredlund’s presentation of the semantics [13], with the exception
that we in a few cases leave out details not relevant for this article
in order to make the presentation clearer. Fredlund’s semantics is
separated into two parts; one functional part, with evaluation of ex-
pressions and one concurrent part where processes are spawned and
messages are sent and delivered. Fredlund’s single-node semantics
is presented here in roughly the same order as in the originalpresen-
tation [13], starting withexpression evaluation rulesthen defining
processes and finally statingprocess evaluation rules.

Definition 1. Erlang expressions are ranged over bye ∈ erlang-
Expr; Erlang values (non-reducible expressions) are ranged over
by v ∈ erlangVal.

The semantics is provided in terms of transition rules on the
format

t
α1

−−−→
1 t′1 . . . t

αn
−−−→

n t′n ϕ1 . . . ϕm

t α
−−→t′

where eachϕi is a logic side-condition that does not refer to any
transition relation.

Definition 2. The expression actions, ranged over byα ∈ erlang-
ExprAction, are:

γ ::= τ computation step

| pid ! v output

| exiting(v) exception

| read(q, v) read from queue

| . . .

Definition 3. The expression transition relation→: erlangExpr
× erlangExprAction × erlangExpr, written e1

α
−−→ e2 when

〈e1, α, e2〉 ∈→, is the least relation satisfying the transition rules in
[13]. In Fig. 1 we have listed Fredlund’s rules for send and receive
at expression level.

In Fig. 1 we have listed the rules for evaluation of send and
receive expressions. The send-rules are fairly straightforward, both
terms are evaluated until finally apid!v-action is generated. The
receive-rule is more complicated, and won’t be explained indetail.
The intuition is thatq is a prefix to the complete message queue,
and none of the messages in that prefix matches any of the patterns

send0
pid!v

pid!v
−−−−−→v

e
α

−−→
1 e′1

send1
e1!e

α
−−→

2 e′1!e2

e
α

−−→e′send2
v!e

α
−−→v!e′

∀i.¬(qmatches q mi)

∃i.((result v mi e′) ∧ ∀j.j < i ⇒ ¬(matches v mj))
receive

receive m end
read(q,v)

−−−−−−−−−→e′

Figure 1. Expression evaluation rules

in m. Also, there exist a pattern inm, such that it is the first one
to matchv, and when substitutingv according to that pattern its
corresponding expression becomee′.

Next we need to formalize the notion of processes, which encap-
sulate Erlang expressions, and the notion of Erlang systems, which
are collections of processes. Erlang processes, ranged over by p ∈
erlangProcess, are either live or dead. The dead processes are in-
troduced to make it easier to reason about the semantics of linked
processes. Processes that are dead still perform some actions; they
will eventually inform linked process about their termination, and
they do respond to received link signals.

Definition 4. An Erlang mailbox is queue data structure, in theory
unbound, thus it can store any number of messages. Mailboxesare
ranged over byq ∈ erlangQueue

Definition 5. A live Erlang process(erlangLiveProcess ⊂ erlang-
Process), is a quintuple:erlangExpr × erlangPid × erlangQueue
× P(erlangPid) × erlangBool, written〈 e, pid, q, pl, b〉 such that

• e is an Erlang expression,
• pid is the process identifier of the process,
• q is a message queue,
• pl is a set of process identifiers (a set of links with other pro-

cesses),
• b is a boolean determining how process exit notifications are

handled.

Definition 6. A terminated (dead) Erlang process (erlangDead-
Process ⊂ erlangProcess) is a tuple:
erlangPid × P (erlangPid × erlangVal), written 〈 pid, plm 〉,
where

• pid is the process identifier of the process,
• plm is a set of tuples, combining process identifiers with a noti-

fication value that should be sent to the corresponding process.

Definition 7. An Erlang system, ranged over bys, is either a sin-
gleton process or a combination of systemss1 ands2, written as
s1 ‖ s2.

Intuitively, the composition of processes into Erlang systems
could be thought of as a set of processes. The‖ operator is commu-
tative and associative. When there is no risk for confusion,we omit
the linked processes parameter and the boolean flag from the live
processes, that is they are written as〈 e, pid, q 〉. Thesignalsare
items of information transmitted between a sending and a receiving

e τ
−−→e′

silent
〈e, pid, q, pl, b〉 τ

−−→〈e′, pid, q, pl, b〉

e
pid′ !v

−−−−−−→e′ pid′ 6= pid
output1

〈e, pid, q, pl, b〉
pid′ ! message(v)

−−−−−−−−−−−−−−−−→〈e′, pid, q, pl, b〉

e
pid ! v

−−−−−−→e′output2
〈e, pid, q, pl, b〉 τ

−−→〈e, pid, q · v, pl, b〉

input

〈e, pid, q, pl, b〉
pid ?message(v)

−−−−−−−−−−−−−−−→〈e, pid, q · v, pl, b〉

link
〈e, pid, q, pl, b〉

pid ? link(pid′)
−−−−−−−−−−−−−−→〈e, pid, q, pl ∪ {pid′}, b〉

term
〈e, pid, q, pl, b〉 τ

−−→〈pid, {〈P, normal〉|P ∈ pl}〉

Figure 2. Process evaluation rules

s
pid ! sig

−−−−−−−−→
1 s′1 s

pid ?sig
−−−−−−−−→

2 s′2com
s1 ‖ s

τ
−−→

2 s′1 ‖ s′2

s
τ

−−→
1 s′1 pids(s′1) ∩ pids(s2) = ∅

interleave
s1 ‖ s

τ
−−→

2 s′1 ‖ s2

Figure 3. Process communication rules

process. Asystem action, committed by an Erlang system is either
a silent action, an input action or an output action. We should also
define the system transition relation.

Definition 8. The signals, ranged over bysig ∈ erlangSignal are:

sig ::= message(v) message

| link(pid) linking with process

| unlink(pid) unlinking process

| . . .

Definition 9. The system actions, ranged over byα ∈ erlang-
SysAction are:

α ::= τ silent action

| pid ! sig output action

| pid ? sig input action

Definition 10.The system transition relation
→: erlangSystem × erlangSysAction × erlangSystem, written
s1

α
−−→ s2, is the least relation satisfying the transition rules in

[13]. Some of those rules are listed here in Fig. 2 and Fig. 3.

The rules in Fig. 2 show how processes perform a computation
step, terminates and sends and receives messages. Note thatmes-
sages sent to the same process are delivered immediately (output2).
Also note that messages to other processes are transferred to the
above layer by a visible (pid′!message(v)) system action. The rules

procA() ->
PidC = spawn(?NODE2,?MODULE,funC,[]),
PidB = spawn(?NODE1,?MODULE,funB,[PidC]),
PidC ! hello,
PidB ! world.

procB(PidC) ->
receive X ->
PidC ! X
end.

procC() ->
receive X ->
ok
end.

Figure 4. Erlang program - Message reordering

CA
1

hello

B
world world

2

3

4?

4?

Figure 5. Message passing

in Fig. 3 show how processes communicate and how computations
are interleaved, note that the communication rules also exist in a
symmetric version where the roles ofs1 ands2 are interchanged.
This concludes the introduction to the original semantics,an ex-
ample with Fredlund’s single-node semantics in use is presented in
Sect. 3.

3. Motivation
In our work with a leader election protocol [5], we saw several
cases where problems arise due to unforseen order of events.Espe-
cially problematic were situations when messages arrived in what
was thought to be an impossible order. To investigate this problem
further, we constructed the Erlang program listed in Fig. 4.This Er-
lang program (process A) first spawns two processes (C and B, and
passes the process identifier of C to B) and then sends a message,
hello, directly to process C. Next the program sends another mes-
sage,world, to process B. When process B receives a message, it
is immediately re-sent to process C. Process C does only one thing,
namely receives one message. Intuitively, process C will receive
the messagehello, since it is sent directly from A to C. However, in
the fundamental ideas behind Erlang [1] the only thing said about
message order is’Message passing between a pair of processes
is assumed to be ordered’. This means that without violating this
propertyworld should be able to arrive beforehello, since we have
no guarantees for the relative message order when the messages are
sent on different routes.

The program in Fig. 4 was executed in three different situations

1. A,B and C where executed in the same runtime system.
2. A,B and C where executed on the same physical machine, but

in separate runtime systems.
3. A,B and C where executed on three different physical machines

connected via a 100 MBit Ethernet network, thus running in
separate runtime systems.

The results where somewhat surprising. If the execution follows
the intuition that it is faster to deliver a message directly, hello
should always arrive first; if the Erlang ideas where implemented
faithfully we should see bothhello andworld arriving first in all
three situations. However, in situation (1)hello always arrive first,
in situations (2) and (3) we see bothhello and world arriving
first. In situation (2),world would arrive first 10-15 times out of
10 000 and in situation (3)world would arrive first somewhat
more frequently, 20-25 times out of 10 000. (Still those numbers
vary from experiment to experiment, due to different network load
and different machine load.) That is, the Erlang runtime system
implementation behave differently in a local setting as compared to
in a distributed setting. This partly explain why errors such as those
found in [5] appear to be common.

Another reason is that Erlang programmers often think of their
system in an event-based way: ”First this process dies, thenthat
process sends a message, then that message is sent...”. In other
words they have a conceptual model of the many possible orders in
which the events can be generated. The semantics adds additional
possibilities in the form of the possible orders in which theevents
actually arrive. This extra complexity may be hard to deal with and
the speed with which messages are delivered allows programmers
to often only think in forms of generated events. Thus, if onedoes
not think carefully enough, it is easy to be misled and overlook
something.

Message reordering in Fredlund’s semantics

What happens if we try to analyze the program in Fig. 4 with
Fredlund’s single-node semantics? Since Fredlund choosesnot to
include nodes in his semantics, it is not too surprising thatthe
program will behave as in situation (1) above, as we can see in
Fig. 6. The desire to also get the behavior in situations (2) and
(3) serves as the motivation for extending Fredlund’s semantics
to be able to fully reason about distributed Erlang systems.It is
especially important in case we use the semantics to producea
model, if certain situations are not present in the model, errors may
be overlooked, and thus giving false confidence.

In the example in Fig. 6, we usePi as a short hand notation for
the process with identifierpi, we also use the short process notation
leving out the linked processes parameter and the boolean flag.

4. Multi-node Semantics
We extend Fredlund’s single-node semantics to a distributed set-
ting in a layered fashion, i.e. by adding another layer on topof the
existing semantics to deal with all aspects of distributed Erlang sys-
tems. One implication of this is that everything defined in terms of
the original semantics is still valid in the extended semantics un-
der the restriction that the system is local, i.e. running onthe same
node. To be fully operational we need to make some restrictions to
the extended semantics, namely we need to ensurefairness. Finally
we demonstrate that the extended semantics work as intended, by
studying the same example as in Sect. 3 in the extended semantics.

Here, we present the definitions and semantic rules needed to
extend Fredlund’s semantics to also include nodes and distributed
execution. Firstly, we add the possibility tospawnprocesses on
other nodes. To be able to do this, we have to extend the concept
of Erlang systemsto Erlang Runtime systems, i.e. a single node,
and alsoErlang Multi-node systemswhich are collections of nodes
forming complete distributed systems. Secondly, we need new rules
for communication between processes on different nodes (i.e. dif-
ferent runtime systems). These communication rules shouldhave
the properties described in Sect. 3, and thus enable certainmessage
reordering. Thirdly, we add the concept of nodes that die andget
restarted again, together with a linking mechanism to send awarn-
ing when a node dies.

4.1 Messages

The message ordering induced by a single-node semantics is too
static; certain message reorderings are not considered. Weachieve
the distributed ordering by introducing one message queueper
node, holding all messages ’in transit’ to that node.

We first present the definitions introducing the new concepts
and slight changes to the underlying semantics and then present the
evaluation rules for the additional objects.

Definition 11.Let the functionnode(erlangPid) return the node
for a given process id (pid) andnode(erlangSystem) returns the
node for an Erlang system.

The node identifier could be any unique identifier. For the sake
of simplicity, we can assume that they are integers.

Everything defined in the original semantics will work in the
extended semantics, with one exception. We have to change the
com-rule (Fig. 3) slightly so that it only applies in the correct
situation where both processes are running on the same node.
Further we also need to do a small modification in order to export
extra information about the sender of a message to the additional
layer we are adding. This is done by replacing the sending operator
! with a tagged version!from. This change is straightforward and
is applied to all the send operators in the original semantics. One
example can be seen in the newcom-rule presented in Fig. 7, where
we have added a side condition such that the rule only applieswhen
the sender and the receiver are running in the same Erlang system.

s
pid!fromsig
−−−−−−−−→

1 s′1 s
pid?sig
−−−−−−→

2 s′2 node(pid) = node(from)
com

s1 ‖ s
τ

−−→
2 s′1 ‖ s′2

Figure 7. New com-rule

Definition 12.An Erlang node message queue, ranged over by
nq ∈ erlangNodeQueue, is a finite sequence of triplets,v1 =
(from1, to1, sig1) · v2 = (from2, to2, sig2) · . . . · vn, whereǫ is
the empty sequence,(·) is concatenation and(\) is deletion of the
first matching triplet, e.g.

nq = (a2, b1, c1) · (a1, b2, c1) · (a1, b2, c2) · (a1, b2, c1) \ (a1, b2, c1)

= (a2, b1, c1) · (a1, b2, c2) · (a1, b2, c1)

4.2 Runtime systems

Next, we define the concepts of alive and dead runtime systems.

Definition 13.A live Erlang Runtime system (ERTS), ranged over
by r ∈ erlangRuntimeSystem is a triplet:
erlangSystem × erlangNodeName × erlangNodeQueue, written
〈 s, node, nq 〉 such that:

• s is the Erlang system at nodenode.
• nodeis the node identifier (name).
• nq is a node message queue.

Definition 14.A stopped Erlang Runtime systemis a triplet:
erlangNodeName × P(erlangPid) × P(erlangPid × erlangPid),
written [[node, npl, nlm]]. Wherenpl is a set process identifiers
(of all processes onnode), andnlm is a set of tuples combining the
process identifier of a terminated process with the process identifier
for a process that is to be notified of the termination. In addition we
also introduce a new way of writing aterminated Erlang process,
previously written〈 pid, plm〉 and instead write this as[[pid, plm]].

An example of a stopped Erlang Runtime system is:[[n1,
{p1, p5, p13}, {(p1, p7), (p13, p7), (p13, p24)}]] where the node

Initial system:
〈PidC = spawn(procC, []) . . . , p0, []〉

After spawns:
〈PidC ! hello . . . , p0, []〉 ‖ 〈receive X → ok end, p1, []〉 ‖ 〈receive X → PidC ! X end, p2, []〉| {z }

s1
Only p0 can make progress:

s
p
1
!message(hello)

−−−−−−−−−−−−−−→
1 〈PidB ! world, p0, []〉 ‖ 〈receive X → ok end, p1, [hello]〉 ‖ P2| {z }

s2

Heres2 can either proceed byp1 readinghello from the message-queue or byp0 sending a message, the first alternative will clearly resultin receiving
hello first, so let us see what happens in the second case:

s
p
2
!message(world)

−−−−−−−−−−−−−−→
2 〈p0, []〉 ‖ P1 ‖ 〈receive X → PidC ! X end, p2, [world]〉| {z }

s3

Yet again we have a choice,s3 can either proceed byp1 reading hello or byp2 receiving and sending a messge, still it is the second case that is interesting
here:

s
τ

−−→
3 P0 ‖ P1 ‖ 〈PidC ! world, p2, []〉| {z }

s4
and further:

s
p
1
!message(world)

−−−−−−−−−−−−−−→
4 P0 ‖ 〈receive X → ok end, p1, [hello, world]〉 ‖ 〈p2, []〉

And also in this case there is no possibility to receiveworld beforehello, with this little example we have shown that in the original semantics, no message
reordering is possible.

Figure 6. Execution sequence in Fredlund’s single-node semantics

identifier isn1, the processes that has executed onn1 arep1, p5

andp13 and there are links betweenp1 andp7 etc. Note also that
node(p5) = n1.

Definition 15.An Erlang Multi-node system(EMNS) is either a
singleton ERTS or a composition of Erlang Multi-node systemsn1

andn2, written asn1 ‖ n2.

Note that here we have chosen to use the same notation (‖) for
composition of Erlang Multi-node systems as for the composition
of Erlang systems in the original semantics. This is to illustrate
that they are similar in behavior. Moreover, there is littlerisk for
confusion.

4.3 Transitions

When multi-node systems make transitions, they are labelled by
actions. The actions that can occur at the level of nodes are defined
below.

Definition 16.The Multi-node system actions, ranged over byγ ∈
erlangMultiNodeSysAction are:

γ ::= τ silent action

| pid!fromsig output action

| pid?fromsig input action

| die(node) node failure

That is, the actions visible inerlangMultiNodeSysAction are
only the node-to-node communication and node failure. Messages
sent between processes executing on the same node is not visible at
this level. Note also that at this level the input actions (?) is tagged
with a from. This is not necessary from a functionality point of
view, but as we see below,fairnesscan be expressed in a simple
and elegant way in the presence of the tagged input action.

Definition 17.The Multi-node system transition relation,
→ : erlangMultiNodeSystem × erlangMultiNodeSysAction ×

erlangMultiNodeSystem, written n
γ

−−−→
1 n2, is the least relation

satisfying the rules in Fig. 8 – Fig. 12.

Definition 18.The functionlinks(erlangNodeQueue) traverses an
Erlang node message queue and picks out all pending link-request
from this queue. The functioninit() is an initialization process
which is started on a new node, what this process does is not further
specified in the semantics. Finally the functiongpl(erlangPid)
return thepl-list (list of linked nodes) for a process, given the
process identifier of that process.

These three functions are related to failing/restarting nodes.
The init-function should be thought of as any reasonable, and
changeable from the outside, starting action for an Erlang node.
For example starting a certain set of processes, or initiatesome
other chain of events. Thelinks and gpl are mere bookkeeping-
functions defined to express what happens in case of node failure
in a comprehensible way.

Definition 19.The functionnmatch(erlangNodeQueue, erlang-
Pid, erlangPid), is a function that given an Erlang node message
queue, a sender process id (from) and a receiver process id (to) re-
turns the first message in the queue sent byfrom to to, e.g.

nq = (a2, b1, c1) · (a1, b2, c1) · (a1, b2, c2) · (a1, b2, c1)

⇒ nmatch(nq, a1, b2) = (a1, b2, c1)

The functionnmatch is later used to retreive a message from
the node message queue in a non-deterministic fashion.

4.4 Operational rules

In Fig. 8 we see thenode-failure-rule. It states that when a node
dies, astopped ERTSwith the same node identifier is created. The
stopped node contains both a list of all the processes previously
running on the node and a collected list of link-notifications to be
sent. Observe that the link-notifications are collected both from the
individual processes and the node message queuenq. The intuition

nlm = {(pid, pid′)|pid′ ∈ gpl(pid), pid ∈ pids(s)} ∪ links(nq)
node-failure

〈s, node, nq〉
die(node)

−−−−−−−−−→[[node, pids(s), nlm]]

Figure 8. Node-failure rule

node-start
[[node, npl, {}]] τ

−−→〈init() ‖ {[[pid, {}]] | pid ∈ npl}, node, ǫ〉

Figure 9. Start node rule

s
pid ! fromsig
−−−−−−−−−→

1 s′1 node(from) 6= node(pid)
outputnode

〈s1, node(from), nq1〉 ‖ 〈s2, node(pid), nq2〉
pid ! fromsig
−−−−−−−−−→

〈s′1, node(from), nq1〉 ‖ 〈s2, node(pid), nq2 · (from,pid,sig)〉

s
pid ! fromlink(from)
−−−−−−−−−−−−−−−→

1 s′1 (pid, from) /∈ nlm
output2node

〈s1, node(from), nq〉 ‖ [[node(pid), npl, nlm]]
from !

pid
exited(pid,noconnection)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

〈s′1, node(from), nq · (pid,from,exited(pid,noconnection))〉 ‖ [[node(pid), npl, nlm]]

s
pid ! fromsig
−−−−−−−−−→

1 s′1

(pid, from) ∈ nlm ∨

¬∃Pid′ : erlangPid.(sig = link(Pid′))
output3node

〈s1, node(from), nq1〉 ‖ [[node(pid), npl, nlm]] τ
−−−→ 〈s′1, [node(from)], nq1〉 ‖ [[node(pid), npl, nlm]]

Figure 10. Intra-node communication – Output rules

s
pid ?sig
−−−−−−−→s′ nmatch(nq,from,pid)= sig

inputnode

〈s, node, nq〉
pid ?fromsig
−−−−−−−−−→〈s′, node, nq \ (from,pid,sig)〉

s
pid′?exited(pid,noconnection)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→s′ (pid, pid′) ∈ nlm

input2node
〈s, node(pid′), nq〉 ‖ [[node(pid), npl, nlm]]

τ
−−→〈s′, node(pid′), nq〉 ‖ [[node(pid), npl, nlm\ (pid, pid′)]]

(pid, pid′) ∈ nlm1
input3node

[[node(pid), npl1, nlm1]] ‖ [[node(pid′), npl2, nlm2]]
τ

−−→

[[node(pid), npl1, nlm1\(pid, pid′)]] ‖ [[node(pid′), npl2, nlm2]]

s τ
−−→ s′silentnode

〈s, node, nq〉 τ
−−→〈s′, node, nq〉

Figure 11. Intra-node communication – Input-rules

behind this is that as soon a process on another node has sent a
link request, the sending process believes that it has a working link
to the linked process. In order to maintain this image, we need to
retreive these messages from the message queue. This is further
discussed in Sect. 5.

In Fig. 9 a node is (re-)started. The interesting thing to notice
here is that we create anerlangDeadProcess for each pid that has
previously been running on the node. Because of this also future
link-requests sent to these processes do get the correct respose,
without having to state further rules in Fig. 11. Note especially that

a node can only be restarted if theplm-list is empty, this is further
discussed in Sect. 5.

In Fig. 10 the first rule,outputnode is the normal output rule,
where a message is sent to a process on a live ERTS, the message
is then appended to the node message queuenq. The message
is later delivered by an input rule. Theoutput2node-rule generates
an appropriate reply to a link-request made to a process on a
dead node. A reply is only generated if there is no previous link
present (i.e. a notification innlm or a message waiting for delivery
in nq1) for that particular process identifier. The last output rule

n
γ

−−→
1 n′

1 pids(n′
1) ∩ pids(n2) = ∅

interleavenode

n1 ‖ n
γ

−−→
2 n′

1 ‖ n2

Figure 12. Node interleaving (symmetrical rule omitted)

e
spawn(n,f,[v1,...,vm]) {result,pid′}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→e′ pid 6= pid′ node(pid) = n

spawn0a

〈e, pid, q, pl, b〉 τ
−−→〈e′, pid, q, pl, b〉 ‖ 〈f(v1, . . . , vm), pid′, ǫ, {pid}, false〉

e
spawn(n,f,[v1,...,vm]) {result,pid′}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→e′ pid 6= pid′ node(pid) 6= n

spawn0b .
〈〈e, pid, q, pl, b〉 ‖ s1, node(pid), nq1〉 ‖ 〈s2, n, nq2〉

τ
−−→

〈〈e′, pid, q, pl, b〉 ‖ s1, node(pid), nq1〉 ‖ 〈〈f(v1, . . . , vm), pid′, ǫ, {pid}, false〉 ‖ s2, n, nq2〉

Figure 13. New spawn-rules

output3node make sure that all other messages to processes on a
dead node are ignored. In Fig. 11 there are three input-rules, which
deliver messages from the node message queue and the notification-
list respectively. In Fig. 11 there is also thesilent-rule, applied
for everything except communication happening at system/process
level. Finally, note that messages sent between processes executing
on the same node does not end up in thenode message queue, since
they are handled by the modifiedcom-rule in Fig. 7.

In Fig. 11 we should note that the ruleinputnode can be ap-
plied in an arbitrary order for a pair of sender and receiver.This
means that messages can (possibly) be reordered. But at the same
time this rule introduces another problem, namely that a certain
(sender,receiver)-pair is never considered. In this situation the de-
livery of some messages are delayed infinitely, and therefore we
have to state a fairness rule. We have more or less the same situa-
tion for theinput2node-rule, which does also require a fairness rule.

To be able to spawn new processes in the multi-node setting,
we also need to slightly refinespawn (and similarilyspawn link).
Refined spawn-rules are listed in Table 13.

We should also take a closer look at what happens with the
node-to-node communication when the receiving process termi-
nates. When a process terminates, its message queueq disappears.
That is all messages which have already been delivered to thepro-
cess are deleted. If the ruleinputnode is applied for a terminated pro-
cess, i.e. if we deliver a message to a terminated process, this is
handled by the rules in Table 3.17 in Fredlunds semantics [13].
That is, the underlying semantics properly destroy messages and
reply to link-requests.

4.5 Fairness

As we noted above, the input-rules, i.e. the rules in Fig. 11,can
be applied in such a way that some messages are never delivered.
That is the rules themselves does not ensure that messages are
delivered in a fair manner. This is generally a bad thing, since many
properties can not be proved in a non-fair system. Thereforewe
need to define fairness-rules which will exclude certain unwanted
behavior of the system. Fairness is defined in terms of permissable
execution sequences.

Definition 20.An execution sequenceis a sequence of Erlang
Multi-node Systemsni, together with corresponding Erlang Multi-
node system actionsγi written:

n
γ0

−−−→
0 n

γ1
−−−→

1 n
γ2

−−−→
2

Definition 21. [Fairness for intra-node messages]
It should hold for all execution sequences,(~n,~γ):

∀i.

�
n

pid!fromsig
−−−−−−−−→

i ni+1 ⇒

∃j > i.

�
n

pid?fromsig
−−−−−−−−→

j nj+1 ∨ n
die(node(pid))

−−−−−−−−−−−→
j nj+1

��
That is, Definition 21 state that every sent message is eventually

delivered or the node where the receiving process is executed dies.

Definition 22. [Fairness for noconnection-messages]
It should hold for all execution sequences,(~n,~γ):

∀i.

�
n

die(node)
−−−−−−−−−→

i ni+1 ⇒ ∃j ≥ i.

�
n

γj
−−−→

j [[node, npl, {}]]

��
That is, Definition 22 state that eventually the list of notifications
to send is empty. Both fairness definitions are written in such a way
that they can easily be expressed as LTL expressions.

4.6 Message reordering

The motivation for extending Fredlund’s single-node semantics
was to capture the distributed behavior where messages werere-
ordered. Therefore, we conclude the presentation of the extended
semantics with an example of such a reordering. The example is
presented in Fig. 14, where we execute the program in Fig. 4 in
the extended semantics. Here we useNi as an abbreviation for the
ERTS with node identifierni.

5. Discussion
The fundamental characteristics of Erlang is described by Arm-
strong in his thesis [1]. Armstrong describes how the concept of
concurrency oriented programmingled to the development of Er-
lang. The original thoughts on distribution are further described by
Wikström [20]. In a concurrency oriented programming language
the following is specified formessage passing: ”Message passing
between a pair of processes is assumed to be ordered.”

In Fredlund’s presentation [13] it is stated that this is indeed
true for the semantics, but due to the construction of thecom-rule
(in Fig. 3), even stronger properties hold in his semantics.In Fred-
lund’s semantics the delivery of a message is instantaneous, mean-
ing thatall messages are delivered in exactly the order they are sent.
Now, this is actually true for processes running on the same node,

Initial system:
〈〈PidC = spawn(n2, funC, []) . . . , p0, []〉, n0, []〉

After spawns:
〈〈PidC ! hello . . . , p1, []〉, n0, []〉 ‖

〈〈receive X → PidC ! X end, p11, []〉, n1, []〉 ‖
〈〈receive X → ok end, p21, []〉, n2, []〉| {z }

m1

Only p1 atn0 can make progress:

m
p
21

!p1
message(hello)

−−−−−−−−−−−−−−−−−→
1 〈〈PidB ! world, p1, []〉, n0, []〉 ‖ N1 ‖

〈〈receive X → ok end, p21, []〉, n2, [(p1, p21, hello)]〉| {z }
m2

Since we are only aiming to show that messages can be reordered we now proceed by lettingp1 atn0 send yet another message:

m
p
11

!p1
message(world)

−−−−−−−−−−−−−−−−−→
2 〈[[p1, []]], n0, []〉 ‖ N2 ‖

〈〈receive X → PidC ! X end, p11, []〉, n1, [(p1, p11, world)]〉| {z }
m3

Next apply theinputnode-rule for noden1:

m
p
11

?p1
message(world)

−−−−−−−−−−−−−−−−−→
3 N0 ‖ 〈〈receive X→PidC ! X end, p11, [world]〉, n1, []〉 ‖ N2| {z }

m4

Proceed by lettingp11 atn1 readworld from its queue and send this on top21 atn2:

m
p
21

!p11
message(world)

−−−−−−−−−−−−−−−−−−→
4 N0 ‖ 〈[[p11, []]], n1, []〉 ‖

〈〈receive X→ ok end, p21, []〉, n2,

[(p1, p21, hello), (p11, p21, world)〉]| {z }
m5

Now to acheive a message reordering we can apply theinputnode-rule for n2 and letnmatch return theworld-message:

m
p
21

?p11
message(world)

−−−−−−−−−−−−−−−−−−→
5 N0 ‖ N1 ‖

〈〈receive X→ ok end, p21, [world]〉, n2,

[(p1, p21, hello)]〉

And clearly we have shown a possible execution sequence where theworld-message arrives before thehello-message.

Figure 14. Execution sequence inextended semantics

due to how the Erlang runtime system is implemented. It is, how-
ever, not true in general for a concurrency oriented programming
language, and specifically not in a distributed setting withseveral
different Erlang nodes.

Nevertheless, since Fredlund’s single-node semantics faithfully
describes what actually happens inside the Erlang runtime system,
we argue that it is a good thing to keep the underlying semantics as
it is. Fredlund’s intra-node message passing is not only more faith-
ful, but also simpler than our inter-node message passing. Thus, us-
ing a special version of local message passing makes certain(local)
systems easier to reason about. An alternative is to only usethe kind
of message passing rules that we have in the node-to-node commu-
nication. The consequence of this is an overall simpler semantics,
which would be less restrictive for a local system. However,this
could be problematic in a model checking context, since it might
result in a bigger state space. Another problem is the introduction
of false negatives, because a local system might fail due to an order
of event not possible in reality.

When developing the extended semantics, we have made several
distinctive choices. In some places it is not entirely clearhow the
Erlang system is working or even how it is supposed to work, and in
such places we have made some simplifying assumptions. Perhaps
the most interesting such place is in thenode-start-rule (Fig. 9)
where we allow a node to restart only if the set of notifications-to-
be-sent (nlm) is empty. In Erlang, these notifications are handled

inside the runtime system and since we do not model the runtime
system it is impossible to capture the full behavior. Instead, since
a node restart is regarded as aslow event it seems reasonable
to do the approximation that a node can not be restarted before
all notifications are sent. This also make matters simple when
we are definingfairnessfor the notification messages. So in all
this is an approximation of the real world, but a very reasonable
approximation. Another choice we made was to introduce one
message queue for ’messages in transit’ per node. There is no
functional motivation behind this choice, we could just as well
have settled for one single global message queue, but in the end
we thought it to be more aesthetic to have one queue per node.

Quite many of the rules presented in Section 4 handle thelink-
messages. The link mechanism is a very useful construction and
many distributed implementations rely on this functionality. The
Erlang concept ofmonitorscan be implemented in terms of links.
It is important to observe that we must treat links differently from
ordinary messages in order to faithfully describe Erlang programs.
For example, take a look at the Erlang program in Fig. 15. If we
runprocA it should be possible to sometimes trap the exit message
(i.e. get an{’EXIT’,pid,kill} from procB and sometimes just
get a{’EXIT’,pid,noproc} back, indicating that process B had
already terminated. This behavior can be observed by running the
program repeatedly. Although the result is heavily dependent on
machine load and network load, with 1000 runs, almost everytime

both behaviors could be observed. This means that it would be
incorrect to treat thelink-message as ordinary message, since the
message order between a pair of processes is respected and then an
order of events such as getting{’EXIT’,pid,kill} from process
B would be impossible.

In Fredlund’s single-node semantics, (and here seen in Fig.2)
a separation is made betweenlink-messages and other messages,
which ensures the correct behavior. However, when dead nodes are
involved, some special care is needed, which results in special link-
rules as seen in Fig. 10 and Fig. 11.

Another part of the linking mechanism is the somewhat com-
plicatednode-failurerule (Fig. 8), where we have to collect link
messages from the node message queue. This is because we are
modelling the link mechanism in a different way from the actual
Erlang implementation. In the Erlang implementation, the run-time
system keeps track of links via a timeout construction. Hereinstead,
we do the book keeping (so to say) at the other end. Therefore,we
have to take extra care when a node fails since the messages innq
are otherwise lost.

procA() ->
PidB = spawn(?ANOTHERNODE,?MODULE,procB,[]),
PidB ! a,
process_flag(trap_exit,true),
link(PidB),
...

procB() ->
receive a ->
exit(kill)
end.

Figure 15. Erlang program - Linking

6. Related Work
The semantics for Erlang is informally described in [2]. A first,
not completed, attempt to formally specify the semantics ofErlang
was made by Petterson [17]. Petterson used Natural Semantics, and
was inspired by similar work with Standard ML and RelationalML.
Following this, the Formal Design Techniques group at the Swedish
Institute of Computing Science (SICS) developed a number of
formal (operational) semantics for different subsets of Erlang, for
example [10] and [11]. These attempts, compared to the semantics
presented by Fredlund in [13], are not as direct and lacks theclear
separation between the functional and the concurrent part of the
semantics. A completely different approach is taken by Huchin
[16]. Huch present a semantics for (a smaller subset) of Erlang,
which is more direct and relies heavily on contextual information.
All these approaches except Petterson’s consider systems which are
not fully distributed since they do not deal with nodes.

Both [10] and [16] make use of subsets of Erlang referred to
as core fragments of Erlang. These references should not be con-
fused with the Core Erlang project [9], which defines a complete
(with respect to representing all possible Erlang programs) core
fragment of Erlang. Core Erlang is in the Erlang compiler used as
the intermediate format where optimizations and transformations
are applied, therefore its use is mostly syntactic. For CoreErlang
the semantics is given in a structured but also informal way,and
does not directly speak about nodes or message delivery.

7. Conclusions and Future Work
After Fredlund proposed his single-node semantics, it was at least
thought ”morally OK” to use this semantics to reason about and
model distributed systems. However, messages actually canand do

arrive in different orders in a distributed setting as compared to a
local setting. A simple experiment involving 3 nodes already shows
this, even when the nodes are implemented as 3 run-time systems
running on the same workstation! Moreover, we discovered that the
above was not merely a theoretical anomaly, but an actual problem
with a real-life implementation.

Along the same lines, many Erlang developers think it morally
OK to test their distributed system on a single node. For the same
reasons as mentioned above, errors might slip through.

We have augmented Fredlund’s single-node semantics with an-
other top-level layer describing nodes. We claim that our semantics
is intuitive and models the actual behaviour of message passing be-
tween nodes.

Future Work We plan to use our semantics as a basis for a
translation from Erlang into a process calculus, with the goal of
being able to automatically model check Erlang systems.

Acknowledgments
We thank Thomas Arts for his valuable comments on earlier ver-
sions of this paper.

References
[1] J. Armstrong. Making reliable distributed systems in the presence

of software errors. PhD thesis, Royal Institute of Technology,
Stockholm, Sweden, December 2003.

[2] J. Armstrong, M. Williams, C. Wikstrom, and R. Virding.Concurrent
Programming in Erlang. Prentice-Hall, Englewood Cliffs, New
Jersey, USA, second edition, 1996.

[3] T. Arts, C. Benac Earle, and J. Derrick. Development of a verified
Erlang program for resource locking.Int. J. on Software Tools for
Technology Transfer, 5(2-3):205–220, 2004.

[4] T. Arts, C. Benac Earle, and J. J. Sánchez Penas. Translating erlang
to mcrl. In Fourth International Conference on Application of
Concurrency to System Design, pages 135–144, Hamilton (Ontario),
Canada, June 2004. IEEE computer society.

[5] T. Arts, K. Claessen, and H. Svensson. Semi-formal development of
a fault-tolerant leader election protocol in Erlang. InLecture Notes
in Computer Science, volume 3395, pages 140 – 154. Springer, Feb
2005.

[6] T. Arts and L.-Å. Fredlund. Trace analysis of Erlang programs. In
Proceedings of the 2002 ACM SIGPLAN workshop on Erlang, pages
16–23. ACM Press, 2002.

[7] T. Arts and J. Hughes. Erlang/quickcheck. InNinth International
Erlang/OTP User Conference, Nov. 2003.

[8] J. Blom and B. Jonsson. Automated test generation for industrial
Erlang applications. InERLANG ’03: Proceedings of the 2003 ACM
SIGPLAN workshop on Erlang, pages 8–14, New York, NY, USA,
2003. ACM Press.

[9] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S. Nystrm,
M. Petterson, and R. Virding. Core Erlang 1.0 language specification.
Technical Report 2000-30, Department of Information Technology,
Uppsala University, November 2000.

[10] M. Dam and L.-̊A. Fredlund. On the verification of open distributed
systems. InSAC ’98: Proceedings of the 1998 ACM symposium on
Applied Computing, pages 532–540, New York, NY, USA, 1998.
ACM Press.

[11] M. Dam, L.-Å. Fredlund, and D. Gurov. Toward parametric
verification of open distributed systems. InCOMPOS’97: Revised
Lectures from the International Symposium on Compositionality: The
Significant Difference, pages 150–185, London, UK, 1998. Springer-
Verlag.

[12] L.-Å. Fredlund. Towards a semantics for Erlang. InFoundations of
Mobile Computation: A Post-Conference Satellite Workshopof FST
& TCS 99, Institute of Mathematical Sciences, Chennai, India, Dec
1999.

[13] L.-Å. Fredlund.A Framework for Reasoning about Erlang Code. PhD
thesis, Royal Institute of Technology, Stockholm, Sweden,2001.

[14] L.-Å. Fredlund, D. Gurov, and T. Noll. Semi-automated verification
of Erlang code. InASE ’01: Proceedings of the 16th IEEE
International Conference on Automated Software Engineering, page
319, Washington, DC, USA, 2001. IEEE Computer Society.

[15] L.-Å. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov.
A verification tool for ERLANG. International Journal on Software
Tools for Technology Transfer (STTT), 4(4):405 – 420, Aug 2003.

[16] F. Huch. Verification of Erlang programs using abstractinterpretation
and model checking. InICFP ’99: Proceedings of the fourth ACM
SIGPLAN international conference on Functional programming,
pages 261–272, New York, NY, USA, 1999. ACM Press.

[17] M. Petterson. A definition of Erlang (draft). Manuscript, Department
of Computer and Information Science, Linköping University, 1996.

[18] M. Widera. Flow graphs for testing sequential erlang programs. In
ERLANG ’04: Proceedings of the 2004 ACM SIGPLAN workshop on
Erlang, pages 48–53, New York, NY, USA, 2004. ACM Press.

[19] U. Wiger. Fault tolerant leader election.http://www.erlang.org/.
[20] C. Wikstrom. Distributed programming in Erlang. InPASCO’94,

First International Symposium on Parallel Symbolic Computation,
Linz, Austria, Dec 1994.

