A Semanticsfor Distributed Erlang

Koen Claessen

Dept. of Computing Science
Chalmers University of Technology
Gothenburg, Sweden

koen@cs.chalmers.se

Abstract

We propose an extension to Fredlund’s formal semanticsdang
that models the concept of nodes. The motivation is thaetarist
sequences of events that can occur in practice, but are silppes

to describe using a single-node semantics, such as Fresllund

The consequence is that some errors in distributed systagtg m

not be detected by model checkers based on Fredlund’s akigin

semantics, or by other single-node verification technicgieh as
testing. Our extension is modest; it re-uses most of FretBumork
but adds an extra layer at the top-level.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory

General Terms Languages, Theory, Verification

Keywords Erlang, semantics, distributed systems, verification

1. Introduction

Most software written in Erlang is running in distributedven
ronments, and is often highly concurrent and dynamic in neatu
Experience shows that such software is inherently hard ftewr
test and verify. Several approaches have been proposeésting
[6, 7, 8, 18, 5] and formally verifying [16, 15, 3] Erlang praans.
One important aspect in the work with verification technigjsach
as model checking is a formal semantics for Erlang.

Fredlund [12] proposes a formal semantics for Erlang, wisch
described in more detail in [13]. Fredlund’s semantics isnals
step operational semantics that is simple, easy to understad
constructed in a layered fashion. The semantics has beeresse
basis in several different verfication projects, such asi-$emmal
verification of Erlang code [14] and model checking a reseurc
manager [15]. Fredlund’s semantics has also been a basikefor
development of a theorem prover [15] and a translation cdrkyl
into a language that can be model checked [4].

Recently, we discovered two previously undiscovered srior
an open source Erlang implementation of a leader electigo-al

rithm [19, 5]. Both errors where caused by chains of events no

foreseen by the designer, and were related to messagel andest
in the distributed environment. As we later show with exaespl

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copiesiar made or distributed
for profit or commercial advantage and that copies bear thtis@ and the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’05 September 25, 2005, Tallinn, Estonia.
Copyright(© 2005 ACM 1-59593-066-3/05/0009. . . $5.00.

Hans Svensson

Dept. of Computing Science
Chalmers University of Technology
Gothenburg, Sweden

hanssv@cs.chalmers.se

using message passing in a distributed Erlang system esqatr
least some extra thought — it is not always obvious to knowtwha
the possible chains of events are in a situations where agver-
cesses are sending messages to each other. Especiallggesds
not always arrive in the expected, intuitive order.

What could be more appropriate than to apply a model checker
in this situation? A model checker would be able to prove, teagn
in unforeseen chains of events, the desired propertieseafjtstem
still hold. However, such a model checker needs to be awambaf
the possible chains of events actually are. For this to wookerly,
actual chains of events that can happen should be reflectéteby
underlying semantics that the model checker uses.

The errors we found in the leader election implementatiorewe
both specific to anulti-node settingThis means that the chains
of events that exposed the errors can only occur when diftere
parts of the system run on different nodes. Thus, contrarhéo
the Erlang idea that distribution should be transparemtetiexist
a real behavioural difference between systems where atlegses
run on the same node, and between systems where processes run
on different nodes.

Unfortunately, Fredlund’s Erlang semantics is also undble
foresee the chains of events that lead to the errors. Themdas
that Fredlund’s semantics does not contain the concept @ésio
All systems described in Fredlund’s semantics are locdltpethe
same runtime system, which is the reason why we will call his
semantics aingle-nodesemantics.

Message passing in Erlang is normally thought of to work sim-
ilarily in a local and a distributed setting. However, Edames-
sage passing actually behaves slightly different in a Ise#iing
compared to the distributed setting. Since Fredlund’slsingde
semantics does not contain this distinction, it is impdesdib faith-
fully model certain distributed systems.

Contributions The first contribution of this paper to the
Erlang community is a warning: The behaviour of messagepgss
between processes running on the same node is limited ceohfzar
processes on different nodes. This is moreover not justaétiel
remark; we have found a real-life example where this agtuall
matters. This leads to two conclusions: (1) When formallyfyimg
Erlang systems (intended to run in a distributed settingdgis
model checker based on a single-node semantics, there tmeght
errors that slip through. But also, (2) when testing Erlaystems
(intended to run in a distributed setting) using a singletima
system containing all processes, there might be errors diiyat
through.

The second contribution is a proposal to add one more layer on
top of Fredlund’s single-node semantics that formally desscthe
concept of nodes, message passing between nodes, and the nod
linking mechanism. The hope is that this new semantics cahebe
formal basis for future model checkers for Erlang.

Summary Sect. 2 contains an introduction to Fredlund’s
single-node semantics. In Sect. 3 we present some motivakn
amples, as well as a description of situations where Fretufr-
lang semantics lacks expressive power. In Sect. 4 we pravias-
tension to Fredlund’s semantics, where we add another taytop
of the existing semantics in order to introduce the full rdlstted
behavior. Some of the design decisions in the extended s&man
is discussed in Sect. 5, related approaches to the problerdear
scribed in Sect. 6 and we conclude in Sect. 7.

2. Original semantics

In [13], Fredlund gives a complete presentation of a sntefp-sp-
erational semantics for Erlang. Here we will highlight soaf¢he
most important aspects, with enough details to be able temrind
stand the presentation of the extended semantics. Fresikingle-
node semantics is presented for a subset of Erlang, thatsisart
standard Erlang without: modules, nodes, floats, refeeriziaa-
ries, ports and the catch-expression. Some of the proaesshal
state has also been omitted: there are no process dicgsnaid
group leader or processes groups and name-registratioprder
cesses is not included.

All definitions and rules presented in this section are tgkam
Fredlund’s presentation of the semantics [13], with theepkion
that we in a few cases leave out details not relevant for thicle
in order to make the presentation clearer. Fredlund’s séosais
separated into two parts; one functional part, with evaduedf ex-
pressions and one concurrent part where processes areepawth
messages are sent and delivered. Fredlund’s single-notenses
is presented here in roughly the same order as in the origieakn-
tation [13], starting withexpression evaluation rulgében defining
processes and finally statipgocess evaluation rules

Definition 1. Erlang expressions are ranged over &y erlang-
Expr; Erlang values (non-reducible expressions) are ranged ove
by v € erlangVal.

The semantics is provided in terms of transition rules on the
format

%1 an

Tt ©1 ... Om

where eachp; is a logic side-condition that does not refer to any
transition relation.

Definition 2. The expression actions, ranged overdye erlang-
ExprAction, are:

v o= T computation step
| pid!v output
| exiting(v) exception
| read(q,v) read from queue
|

Definition 3. The expression transition relation: erlangExpr

x erlangExprAction x erlangExpr, written e; -~ ez when
(e1, @, e2) €—, isthe least relation satisfying the transition rules in
[13]. In Fig. 1 we have listed Fredlund’s rules for send anckeiee

at expression level.

In Fig. 1 we have listed the rules for evaluation of send and
receive expressions. The send-rules are fairly straightfad, both
terms are evaluated until finally @d!v-action is generated. The
receive-rule is more complicated, and won't be explainedetail.
The intuition is thatg is a prefix to the complete message queue,
and none of the messages in that prefix matches any of thensatte

e ¢
send = -
vie —uvle

Vi.—~(gmatches ¢ m;)
Ji.((result v m; €') AVj.j < i = —(matchesv m;))
read(q,v) |,
hiiiho v L ZAON

receive
receive m end

Figure 1. Expression evaluation rules

in m. Also, there exist a pattern im, such that it is the first one
to matchv, and when substituting according to that pattern its
corresponding expression beconie

Next we need to formalize the notion of processes, whichgnca
sulate Erlang expressions, and the notion of Erlang systetrish
are collections of processes. Erlang processes, rangedpyec
erlangProcess, are either live or dead. The dead processes are in-
troduced to make it easier to reason about the semanticekefdi
processes. Processes that are dead still perform somesdtiey
will eventually inform linked process about their termiieet, and
they do respond to received link signals.

Definition 4. An Erlang mailbox is queue data structure, in theory
unbound, thus it can store any number of messages. Maillzores
ranged over by, € erlangQueue

Definition 5. A live Erlang procesgerlanglLiveProcess C erlang-
Process), is a quintupleerlangExpr x erlangPid x erlangQueue
x P(erlangPid) x erlangBool, written (e, pid, g, pl, b) such that

e eis an Erlang expression,

¢ pidis the process identifier of the process,

e gis a message queue,

® plis a set of process identifiers (a set of links with other pro-
cesses),

e b is a boolean determining how process exit notifications are
handled.

Definition 6. A terminated (dead) Erlang processrléngDead-
Process C erlangProcess) is a tuple:

erlangPid x P (erlangPid x erlangVal), written (pid, plm),
where

® pidis the process identifier of the process,

* pimis a set of tuples, combining process identifiers with a noti-
fication value that should be sent to the corresponding gsoce

Definition 7. An Erlang systemranged over by, is either a sin-
gleton process or a combination of systemsand s», written as
s1 || s2.

Intuitively, the composition of processes into Erlang eyss
could be thought of as a set of processes. [Tbperator is commu-
tative and associative. When there is no risk for confusiapmit
the linked processes parameter and the boolean flag fronivthe |
processes, that is they are written(as, pid, q). Thesignalsare
items of information transmitted between a sending and eivag

T
e —€

(e,pid, q,pl,b) ——(e',pid,q,pl,b)

silent

pid’ v

e pid # pid
pid’ ! message(V)

output;

(e, pid, q,pl, b) (¢, pid, q, pl, b)

pid!v ,
€

<67 pldv Q7pl7 b> - <67p7:d7 q- 'U,pl, b>

outpub

i t
inpu pid ?message(V)

(e, pid, q, pl, b) (e, pid,q - v,pl,b)

link

pid ?link(pid)

(e, pid, q, pl, b) (e, pid, q, pl U {pidl}7 b)

term

(e, pid, q,pl,b) ——(pid, {(P, normal)| P € pl})

Figure 2. Process evaluation rules

pid! sig
— _>S/

1 So

pid ?sig
_ _.8/

Eh 2

com —
sl sy 778 || s
o sh pids(s}) N pids(s2) = 0

s1)l 8,778 || 52

S
interleave

Figure 3. Process communication rules

process. Asystem actioncommitted by an Erlang system is either
a silent action, an input action or an output action. We ghaildo
define the system transition relation.

Definition 8. The signals, ranged over Byg € erlangSignal are:

sig == message(v) message
| link(pid) linking with process
| unlink(pid) unlinking process
|

Definition 9. The system actions, ranged over by € erlang-
SysAction are:

Q= T silent action
| pid!sig output action
| pid?sig input action

Definition 10. The system transition relation

—: erlangSystem X erlangSysAction x erlangSystem, written

s1 — s2, is the least relation satisfying the transition rules in
[13]. Some of those rules are listed here in Fig. 2 and Fig. 3.

procA() —->

PidC = spawn(?NODE2,?MODULE, funC, [1),
PidB = spawn(?NODE1,?MODULE, funB, [PidC]),
PidC ! hello,

PidB ! world

procB(PidC) ->
receive X ->
PidC ! X
end.

procC() ->
receive X ->
ok
end.

Figure4. Erlang program - Message reordering

4?
world

B 3

Figure5. Message passing

in Fig. 3 show how processes communicate and how compusation
are interleaved, note that the communication rules alsst éxia
symmetric version where the roles of and s, are interchanged.
This concludes the introduction to the original semantios ex-
ample with Fredlund’s single-node semantics in use is ptesdn
Sect. 3.

3. Motivation

In our work with a leader election protocol [5], we saw seVera
cases where problems arise due to unforseen order of etsps-
cially problematic were situations when messages arrinedtiat
was thought to be an impossible order. To investigate thablpm
further, we constructed the Erlang program listed in Fig s Er-
lang program (process A) first spawns two processes (C anddB, a
passes the process identifier of C to B) and then sends a reessag
hello, directly to process C. Next the program sends another mes-
sage,world, to process B. When process B receives a message, it
is immediately re-sent to process C. Process C does onlyhamg t
namely receives one message. Intuitively, process C wikive
the messagkello, since itis sent directly from A to C. However, in
the fundamental ideas behind Erlang [1] the only thing shioua
message order iSMessage passing between a pair of processes
is assumed to be orderedlhis means that without violating this
propertyworld should be able to arrive befolello, since we have
no guarantees for the relative message order when the nessaigg
sent on different routes.

The program in Fig. 4 was executed in three different situneti

1. A,B and C where executed in the same runtime system.

The rules in Fig. 2 show how processes perform a computation 2. A,B and C where executed on the same physical machine, but

step, terminates and sends and receives messages. Noteethat
sages sent to the same process are delivered immediategpug).

Also note that messages to other processes are transfertad t
above layer by a visiblep{d'!message(v)) system action. The rules

in separate runtime systems.

3. A,B and C where executed on three different physical nmeshi
connected via a 100 MBIt Ethernet network, thus running in
separate runtime systems.

The results where somewhat surprising. If the executiolovis
the intuition that it is faster to deliver a message diredtigllo
should always arrive first; if the Erlang ideas where implatad
faithfully we should see bothello andworld arriving first in all
three situations. However, in situation (i8llo always arrive first,
in situations (2) and (3) we see botello and world arriving
first. In situation (2),world would arrive first 10-15 times out of
10 000 and in situation (3yvorld would arrive first somewhat
more frequently, 20-25 times out of 10 000. (Still those nensb
vary from experiment to experiment, due to different netoioad
and different machine load.) That is, the Erlang runtimeteys
implementation behave differently in a local setting as parad to
in a distributed setting. This partly explain why errorsisas those
found in [5] appear to be common.

Another reason is that Erlang programmers often think off the
system in an event-based way: "First this process dies, ttian
process sends a message, then that message is sent..hein ot
words they have a conceptual model of the many possible®nder
which the events can be generated. The semantics addsoaddliti
possibilities in the form of the possible orders in which gwents
actually arrive. This extra complexity may be hard to dedahvaind
the speed with which messages are delivered allows progeasam
to often only think in forms of generated events. Thus, if does
not think carefully enough, it is easy to be misled and owklo
something.

Message reordering in Fredlund’s semantics

What happens if we try to analyze the program in Fig. 4 with
Fredlund’s single-node semantics? Since Fredlund chouste®
include nodes in his semantics, it is not too surprising that

program will behave as in situation (1) above, as we can see in

Fig. 6. The desire to also get the behavior in situations (#) a
(3) serves as the motivation for extending Fredlund’s sditsn
to be able to fully reason about distributed Erlang systeinis
especially important in case we use the semantics to produce
model, if certain situations are not present in the modebremay
be overlooked, and thus giving false confidence.

In the example in Fig. 6, we ug® as a short hand notation for
the process with identifier;, we also use the short process notation
leving out the linked processes parameter and the boolegn fla

4, Multi-node Semantics

We extend Fredlund’s single-node semantics to a distribats-
ting in a layered fashion, i.e. by adding another layer ondbihne
existing semantics to deal with all aspects of distributddrig) sys-
tems. One implication of this is that everything defined imrte of
the original semantics is still valid in the extended sericantin-
der the restriction that the system is local, i.e. runningtensame
node. To be fully operational we need to make some restistio
the extended semantics, namely we need to eriairresss Finally
we demonstrate that the extended semantics work as intehged
studying the same example as in Sect. 3 in the extended semant

Here, we present the definitions and semantic rules needed to

extend Fredlund’s semantics to also include nodes andhdittd
execution. Firstly, we add the possibility spawnprocesses on

4.1 Messages

The message ordering induced by a single-node semantios is t
static; certain message reorderings are not considerecciieve
the distributed ordering by introducing one message qusare
node holding all messages 'in transit’ to that node.

We first present the definitions introducing the new concepts
and slight changes to the underlying semantics and theemrése
evaluation rules for the additional objects.

Definition 11.Let the functionnode(erlangPid) return the node
for a given process id (pid) antbde(erlangSystem) returns the
node for an Erlang system.

The node identifier could be any unique identifier. For theesak
of simplicity, we can assume that they are integers.

Everything defined in the original semantics will work in the
extended semantics, with one exception. We have to chamge th
comrule (Fig. 3) slightly so that it only applies in the correct
situation where both processes are running on the same node.
Further we also need to do a small modification in order to expo
extra information about the sender of a message to the addliti
layer we are adding. This is done by replacing the sendingatpe
! with a tagged versiory,n. This change is straightforward and
is applied to all the send operators in the original semantine
example can be seen in the neamrule presented in Fig. 7, where
we have added a side condition such that the rule only apphies
the sender and the receiver are running in the same Erlatgnsys

pidlfomsig

, pid?sig
51 51

Sq s, node(pid) = node(from)

com =
s1llsy ™71 | 5

Figure7. New com-rule

Definition 12. An Erlang node message queueanged over by
nq € erlangNodeQueue, is a finite sequence of triplets; =
(from,,to1, sig,) - v2 = (from,,to2,sig,) - ... - vn, Wheree is
the empty sequencég,) is concatenation and\) is deletion of the
first matching triplet, e.qg.

ng = (az2,b1,c1) - (a1,b2,c1) - (a1,b2,¢2) - (a1,b2,c1) \ (a1,b2,c1)

= (az,b1,c1) - (a1,b2,c2) - (a1,b2,c1)
4.2 Runtimesystems
Next, we define the concepts of alive and dead runtime systems
Definition 13. A live Erlang Runtime system (ERT®nged over
by r € erlangRuntimeSystem is a triplet:

erlangSystem x erlangNodeName X erlangNodeQueue, written
('s, node, nq) such that:

¢ sis the Erlang system at nodede
¢ nodeis the node identifier (name).
e ngis a node message queue.

Definition 14.A stopped Erlang Runtime systens a triplet:

other nodes. To be able to do this, we have to extend the cONCep g |3ngNodeName x P(erlangPid) x P(erlangPid x erlangPid),

of Erlang systems$o Erlang Runtime systemse. a single node,
and alscErlang Multi-node systemshich are collections of nodes
forming complete distributed systems. Secondly, we needrakes
for communication between processes on different nodesdjt-
ferent runtime systems). These communication rules shioale
the properties described in Sect. 3, and thus enable cenegsage
reordering. Thirdly, we add the concept of nodes that die getd
restarted again, together with a linking mechanism to sendra-
ing when a node dies.

written [node, npl, nim]. Wherenpl is a set process identifiers
(of all processes onodg, andnimis a set of tuples combining the
process identifier of a terminated process with the prockstifier
for a process that is to be notified of the termination. In &iddiwe
also introduce a new way of writingt@rminated Erlang process
previously written{ pid, pIm) and instead write this gspid, pIm].

An example of a stopped Erlang Runtime system [isi,
{p1,p5,p13}, {(p1,p7), (P13,p7), (P13, p24)}] Where the node

Initial system:

After spawns:

(PidC = spawn(procC,[]) ..

(PidC ! hello...,po,[]) || (receive X — ok end,p1,][]) || (receive X — PidC! X end, p2, [])

- po, [])

S
Only pg can make progress:
P, !message(hello)

S1

(PidB ! world, po, []) || (receive X — ok end, pi, [hello]) || P

hellofirst, so let us see what happens in the second case:
p,!message(world)

Here sy can either proceed by; readinghello from the message-queue or py sending a message, the first alternative will clearly reisuteceiving

s «(po,[]) | Pr |l (receive X — PidC! X end, p2, [world])

S,

here:

Yet again we have a choice; can either proceed hy; reading hello or by receiving and sending a messge, still it is the second caséstinteresting

.
537 Py || Py || (PidC ! world, po, [])

S3

and further:
p, !message(world)

reordering is possible.

Sy

5, Po || (receive X — ok end, p1, [hello, world]) || (p2,[])
And also in this case there is no possibility to recemald beforehello, with this little example we have shown that in the originar&ntics, no message

Figure 6. Execution sequence in Fredlund’s single-node semantics

identifier isn1, the processes that has executedngrare p1, ps
andp.3 and there are links between andp- etc. Note also that
node(ps) = n.

Definition 15.An Erlang Multi-node systenEMNS) is either a
singleton ERTS or a composition of Erlang Multi-node system
andng, written asny || na.

Note that here we have chosen to use the same notéfjidar(
composition of Erlang Multi-node systems as for the conpmsi
of Erlang systems in the original semantics. This is to tha®
that they are similar in behavior. Moreover, there is litilek for
confusion.

4.3 Transitions

When multi-node systems make transitions, they are labdiie
actions. The actions that can occur at the level of nodesefnesd
below.

Definition 16. The Multi-node system actions, ranged overnby
erlangMultiNodeSysAction are:

v o= T silent action
| pidlemsig oOutput action
| pidtemsig input action
| die(node) node failure

That is, the actions visible iarlangMultiNodeSysAction are
only the node-to-node communication and node failure. sigss
sent between processes executing on the same node is ibie aisi
this level. Note also that at this level the input actiot)si¢ tagged
with a from. This is not necessary from a functionality point of
view, but as we see belodairnesscan be expressed in a simple
and elegant way in the presence of the tagged input action.

Definition 17. The Multi-node system transition relation,
— erlangMultiNodeSystem x erlangMultiNodeSysAction x

erlangMultiNodeSystem, written nling, is the least relation
satisfying the rules in Fig. 8 — Fig. 12.

Definition 18. The functionlinks(erlangNodeQueue) traverses an
Erlang node message queue and picks out all pending linkestq
from this queue. The functioimit() is an initialization process
which is started on a new node, what this process does is ribefu
specified in the semantics. Finally the functigpl(erlangPid)
return thepl-list (list of linked nodes) for a process, given the
process identifier of that process.

These three functions are related to failing/restartingeso
The init-function should be thought of as any reasonable, and
changeable from the outside, starting action for an Erlanden
For example starting a certain set of processes, or inigatae
other chain of events. Thinks and gpl are mere bookkeeping-
functions defined to express what happens in case of nodeeail
in a comprehensible way.

Definition 19.The function nmatch(erlangNodeQueue, erlang-

Pid, erlangPid), is a function that given an Erlang node message
queue, a sender process fob(n) and a receiver process itbj re-
turns the first message in the queue senfroy to to, e.g.

(az,b1,c1) - (a1,b2,c1) - (a1, b2, c2) - (a1, bz, 1)

= nmatch(nq,al,bg) = (a17b2701)

nq =

The functionnmatch is later used to retreive a message from
the node message queue in a non-deterministic fashion.

4.4 Operational rules

In Fig. 8 we see thaode-failurerule. It states that when a node
dies, astopped ERT®&ith the same node identifier is created. The
stopped node contains both a list of all the processes prelyio
running on the node and a collected list of link-notificaido be
sent. Observe that the link-notifications are collectedh fiatm the
individual processes and the node message gueguEhe intuition

Im = {(pid, pid’)|pid’ € gpl(pid), pid € pids(s)} U links(ng)

) n
node-failure

(s, node, nq)

die(node)

[node, pids(s), nim]

Figure 8. Node-failure rule

node-start

[node, npl, {}]—— (init() || {[pid, {}] | pid € npl}, node, €)

Figure9. Start node rule

pid !, .sig /

IR L
N s

node(from) # node(pid)

OUtputlode

(s1, node(from), ng1) || (s2, node(pid), ngz)

pid !, .sig

(s, node(from), nq1) || {s2, node(pid), ngs - (from,pid,sig)

pid !, linkfrom)
output2,., s, s1 (pid, fro@ ¢ n.lm .
) from! . exited(pidnoconnection)
(s1, node(from), ng) || [node(pid), npl, nim]
(s', node(from), nq - (pid,fromexited(pidnoconnection))) || [node(pid), npl, nim]
pid!,_sig (pid, from) € nim v
outpUt,.,. s, s —3Pid’ : erlangPid(sig = link(Pid’))

(s1, node(from), ng1) || [node(pid), npl, nlm] —— (s7, [node(from)], nq1) || [node(pid), npl, nim]

Figure 10. Intra-node communication — Output rules

pid ?sig
. § ——S§
Inputwde

nmatch(ng,from,pid)= sig

(s, node, nq)

pid’ ?exited(pid,noconnection) |,
s s

pid ?,,Sig

(s',node, ng \ (from,pid,sig)

inpUt2node

(pid,pid’) € nim

(s, node(pid’), ng) || [node(pid), npl, nim]— (s, node(pid’), ng) || [node(pid), npl, nim\ (pid, pid")]

inpUtSnode

(pid, pid’) € nlmy

[node(pid), npl;, nlmy] || [node(pid’), npl,, nimy]—
[node(pid), npl, , nim, \ (pid, pid')] || [node(pid!), npl,, nim.]

silentoge

T ’
S — 8§

(s, node, ng)— (s', node, nq)

Figure 11. Intra-node communication — Input-rules

behind this is that as soon a process on another node has sent a node can only be restarted if then-list is empty, this is further

link request, the sending process believes that it has aimglink

to the linked process. In order to maintain this image, wedrtee
retreive these messages from the message queue. Thisherfurt
discussed in Sect. 5.

In Fig. 9 a node is (re-)started. The interesting thing taaeot
here is that we create amlangDeadProcess for each pid that has
previously been running on the node. Because of this alsoeut
link-requests sent to these processes do get the corrgmises
without having to state further rules in Fig. 11. Note espligithat

discussed in Sect. 5.

In Fig. 10 the first ruleoutput,,. is the normal output rule,
where a message is sent to a process on a live ERTS, the message
is then appended to the node message queperhe message
is later delivered by an input rule. Theutput2 . rule generates
an appropriate reply to a link-request made to a process on a
dead node. A reply is only generated if there is no previook li
present (i.e. a notification inlm or a message waiting for delivery

in ng1) for that particular process identifier. The last outputerul

— !

ny

pids(n}) N pids(n2) = 0

. ny
interleavgoge

e
n1 || ny ™ nq || n2

Figure 12. Node interleaving (symmetrical rule omitted)

SpawWN(n, f,[vy,...,um])~ {result,pid’}

e’ pid # pid’ node(pid) = n

SPawnog

<67pid7 qapl7 b>l_’<el7pid7 q7pl7 b> H <f(’l)1, e

Spawn(n, f,[vy,...,vm])~ {result,pid’}

e pid # pid’

spawngp

,Um), pid’, €, {pid}, false)

node(pid) # n

<<67p7:d7 qvpl7b> H SlvnOde(pid)v nql) H <82,’I‘L, TLQ2>l—‘

<<6/,pid, qvpl7 b> || 51, nOde(pid)7 qu1> || <<f(1)17 s

,’Um),pidl, €, {pld}7 false) || 52, M, TLQQ>

Figure 13. New spawn-rules

output3 ,, make sure that all other messages to processes on aDefinition 21.[Fairnessfor intra-node messages]

dead node are ignored. In Fig. 11 there are three input;ruleish

deliver messages from the node message queue and the tiotifica

list respectively. In Fig. 11 there is also tils#entrule, applied
for everything except communication happening at systesugss
level. Finally, note that messages sent between processestimg
on the same node does not end up innhde message quewgnce
they are handled by the modifiedmrule in Fig. 7.

In Fig. 11 we should note that the ruleput,, can be ap-
plied in an arbitrary order for a pair of sender and receiifdns

means that messages can (possibly) be reordered. But artie s

time this rule introduces another problem, namely that sager
(sender,receiver)-pair is never considered. In this sitnathe de-
livery of some messages are delayed infinitely, and thezefor

have to state a fairness rule. We have more or less the sanae sit
tion for theinput2 ,-rule, which does also require a fairness rule.

It should hold for all execution sequencé¢s, 7):

pidliomsig
V1. n; Ni41 =

pid?fomsig die(node(pid))

3] > 1. (nj nj+1 V n; nj+1)}
That is, Definition 21 state that every sent message is eatiyntu
delivered or the node where the receiving process is exediés.

Definition 22.[Fairnessfor noconnection-messages|
It should hold for all execution sequencés, ¥):

V1. <nl nip1 = 35 > 1. (njlﬂn0d67 npl, {H]))

die(node)

To be able to spawn new processes in the multi-node setting, That is, Definition 22 state that eventually the list of notifions

we also need to slightly refirgpawn (and similarilyspawn_link).
Refined spawn-rules are listed in Table 13.

to send is empty. Both fairness definitions are written irhsaiavay
that they can easily be expressed as LTL expressions.

We should also take a closer look at what happens with the

node-to-node communication when the receiving procesaiter
nates. When a process terminates, its message qudisappears.
That is all messages which have already been delivered forthe
cess are deleted. If the rulgput . is applied for a terminated pro-
cess, i.e. if we deliver a message to a terminated processisth

handled by the rules in Table 3.17 in Fredlunds semantick [13

That is, the underlying semantics properly destroy message
reply to link-requests.

45 Fairness
As we noted above, the input-rules, i.e. the rules in Fig.ckh

4.6 Messagereordering

The motivation for extending Fredlund’s single-node setican
was to capture the distributed behavior where messages reere
ordered. Therefore, we conclude the presentation of thenebeid
semantics with an example of such a reordering. The examsple i
presented in Fig. 14, where we execute the program in Fig. 4 in
the extended semantics. Here we D&eas an abbreviation for the
ERTS with node identifien,;.

5. Discussion

be applied in such a way that some messages are never delivere The fundamental characteristics of Erlang is described byn-A
That is the rules themselves does not ensure that messages arstrong in his thesis [1]. Armstrong describes how the cohoép

delivered in a fair manner. This is generally a bad thingcsimany

properties can not be proved in a non-fair system. Therefare
need to define fairness-rules which will exclude certain amted

behavior of the system. Fairness is defined in terms of peahle

execution sequences

Definition 20.An execution sequences a sequence of Erlang
Multi-node Systems;, together with corresponding Erlang Multi-
node system actiong written:
S, D2,

Ty

Y0
—_

ng n,y

concurrency oriented programmirigd to the development of Er-
lang. The original thoughts on distribution are furtheratésed by
Wikstrom [20]. In a concurrency oriented programming laage
the following is specified fomessage passingMessage passing
between a pair of processes is assumed to be ordered.”

In Fredlund’'s presentation [13] it is stated that this iseed
true for the semantics, but due to the construction ofci@rule
(in Fig. 3), even stronger properties hold in his semantit&red-
lund’s semantics the delivery of a message is instantaneoeen-
ing thatall messages are delivered in exactly the order they are sent.
Now, this is actually true for processes running on the saaten

Initial system:

After spawns:
((PidC ! hello ..

(<PidC = spawn(n27funC,H) ,po,[Dﬂlo,H)

- p1, [1),mo, [1)]

((receive X — PidC ! X end,pi1,[]),n1,[]) ||
((receive X — ok end,po1,|[]),n2,[])

Only p; atng can make progress:
Py, !p, message(hello)

my

my ((PidB ! world,p1,[]),no,[]) I N1 ||
((receive X — ok end,pai,|]),n2,[(p1,p21,hello)])

p,.!p, message(world)

Since we are only aiming to show that messages can be redrderaow proceed by letting; atng send yet another message:

m,

my (Ip1, [11;mo, [1) 1| Na ||
((receive X — PidC ! X end,pi1,|[]),n1,[(p1,p11,world)])
mg
Next apply the@nput,.qe-rule for noden :
P11 ?p, message(world)
mg No || {(receive X—PidC ! X end,p11, [world]),ni,[]) || N2
my
Proceed by letting1; atn; readworld from its queue and send this onpg; atna:
Py1!p,, message(world)
my No || {[p11, [, na, [])]

((receive X— ok end, p21, | |), n2,
[(p1,p21,hello), (p11, p21,world))]

Ps; ?p,, message(world)

S

Now to acheive a message reordering we can applyng,oq-rule for ng and letnmatch return thewor1d-message:

s No |l M |
((receive X— ok end, pa21, [world]), na,
[(p1, p21,hello)])

And clearly we have shown a possible execution sequencesviheworld-message arrives before thellomessage.

ms

Figure 14. Execution sequence extended semantics

due to how the Erlang runtime system is implemented. It igy-ho
ever, not true in general for a concurrency oriented prognarg
language, and specifically not in a distributed setting wikeral
different Erlang nodes.

Nevertheless, since Fredlund’s single-node semantittsftidly
describes what actually happens inside the Erlang runtirsies),
we argue that it is a good thing to keep the underlying seroaat
itis. Fredlund’s intra-node message passing is not onlyerfaith-
ful, but also simpler than our inter-node message passimgs,Tus-
ing a special version of local message passing makes cédaat)
systems easier to reason about. An alternative is to onlyhaesdnd
of message passing rules that we have in the node-to-noda@om
nication. The consequence of this is an overall simpler s¢icg
which would be less restrictive for a local system. Howeveis
could be problematic in a model checking context, since ghmi
result in a bigger state space. Another problem is the inztidn
of false negatives, because a local system might fail due trder
of event not possible in reality.

inside the runtime system and since we do not model the rentim
system it is impossible to capture the full behavior. Indtesince
a node restart is regarded asslw event it seems reasonable
to do the approximation that a node can not be restarted defor
all notifications are sent. This also make matters simplenwhe
we are definingfairnessfor the notification messages. So in all
this is an approximation of the real world, but a very readbma
approximation. Another choice we made was to introduce one
message queue for ‘'messages in transit’ per node. There is no
functional motivation behind this choice, we could just asllw
have settled for one single global message queue, but innthe e
we thought it to be more aesthetic to have one queue per node.
Quite many of the rules presented in Section 4 handlditte
messages. The link mechanism is a very useful constructidn a
many distributed implementations rely on this functiotyalirhe
Erlang concept omonitorscan be implemented in terms of links.
It is important to observe that we must treat links diffehgifitom
ordinary messages in order to faithfully describe Erlaragpams.

When developing the extended semantics, we have made lseveraFor example, take a look at the Erlang program in Fig. 15. If we

distinctive choices. In some places it is not entirely cleaw the
Erlang system is working or even how it is supposed to wor#,ian
such places we have made some simplifying assumptionsaperh
the most interesting such place is in thede-starirule (Fig. 9)
where we allow a node to restart only if the set of notificasido-

runprocA it should be possible to sometimes trap the exit message
(i.e. get an{’EXIT’,pid,kill} from procB and sometimes just
get a{’EXIT’,pid,noproc} back, indicating that process B had
already terminated. This behavior can be observed by rgniia
program repeatedly. Although the result is heavily depahdm

be-sent iflm) is empty. In Erlang, these notifications are handled machine load and network load, with 1000 runs, almost eiragyt

both behaviors could be observed. This means that it would be arrive in different orders in a distributed setting as comeplato a
incorrect to treat théink-message as ordinary message, since the local setting. A simple experiment involving 3 nodes alresldows
message order between a pair of processes is respectecearghth this, even when the nodes are implemented as 3 run-timensyste
order of events such as gettiigEXIT’ ,pid,kill} from process running on the same workstation! Moreover, we discoveratittie
B would be impossible. above was not merely a theoretical anomaly, but an actualero
In Fredlund’s single-node semantics, (and here seen inZyig. with a real-life implementation.
a separation is made betweknk-messages and other messages, Along the same lines, many Erlang developers think it mgrall
which ensures the correct behavior. However, when deadsrarge OK to test their distributed system on a single node. For &mees
involved, some special care is needed, which results inaldad- reasons as mentioned above, errors might slip through.
rules as seen in Fig. 10 and Fig. 11. We have augmented Fredlund’s single-node semantics with an
Another part of the linking mechanism is the somewhat com- other top-level layer describing nodes. We claim that oonaatics
plicatednode-failurerule (Fig. 8), where we have to collect link s intuitive and models the actual behaviour of messagdmabs-
messages from the node message queue. This is because we ateeen nodes.
modelling the link mechanism in a different way from the attu Future Work We plan to use our semantics as a basis for a
Erlang implementation. In the Erlang implementation, tle-time translation from Erlang into a process calculus, with thelgaf
system keeps track of links via a timeout construction. htestead, being able to automatically model check Erlang systems.
we do the book keeping (so to say) at the other end. Therefare,
have to take extra care when a node fails since the messages in

are otherwise lost. Acknowledgments

We thank Thomas Arts for his valuable comments on earlier ver

procA() -> h .
PidB = spawn(?ANOTHERNODE, ?MODULE, procB, [1), sions of this paper.
PidB ! a,
process_flag(trap_exit,true),
1ink(PidB), References
T [1] J. Armstrong. Making reliable distributed systems in the presence
of software errors PhD thesis, Royal Institute of Technology,
procBO) -> Stockholm, Sweden, December 2003.
receive a -> . X i
exit(kill) [2] J. Armstrong, M. Williams, C. Wikstrom, and R. Virdingoncurrent
end. Programming in Erlang Prentice-Hall, Englewood Cliffs, New

Figure 15. Erlang program - Linking

6. Related Work

The semantics for Erlang is informally described in [2]. Asfir
not completed, attempt to formally specify the semantidsrtdng
was made by Petterson [17]. Petterson used Natural Serszantid
was inspired by similar work with Standard ML and Relatiokfl.

Following this, the Formal Design Techniques group at thedsh

Institute of Computing Science (SICS) developed a number of

formal (operational) semantics for different subsets dafy, for
example [10] and [11]. These attempts, compared to the s&raan
presented by Fredlund in [13], are not as direct and lacks!tar
separation between the functional and the concurrent pgatieo
semantics. A completely different approach is taken by Hinch
[16]. Huch present a semantics for (a smaller subset) ofnirla
which is more direct and relies heavily on contextual infation.
All these approaches except Petterson’s consider systbimk are
not fully distributed since they do not deal with nodes.

Both [10] and [16] make use of subsets of Erlang referred to

as core fragments of Erlang. These references should nabrbe ¢
fused with the Core Erlang project [9], which defines a corgple
(with respect to representing all possible Erlang progjactse
fragment of Erlang. Core Erlang is in the Erlang compilerduas
the intermediate format where optimizations and transétioms
are applied, therefore its use is mostly syntactic. For Gatang
the semantics is given in a structured but also informal vaag
does not directly speak about nodes or message delivery.

7. Conclusionsand Future Work

After Fredlund proposed his single-node semantics, it wWasaest
thought "morally OK” to use this semantics to reason abowt an
model distributed systems. However, messages actuallgroéao

Jersey, USA, second edition, 1996.

[3] T. Arts, C. Benac Earle, and J. Derrick. Development ofsfied
Erlang program for resource lockingnt. J. on Software Tools for
Technology Transfeb(2-3):205-220, 2004.

[4] T. Arts, C. Benac Earle, and J. J. Sanchez Penas. Ttangskrlang
to mcrl. In Fourth International Conference on Application of
Concurrency to System Desigrages 135-144, Hamilton (Ontario),
Canada, June 2004. IEEE computer society.

[5] T. Arts, K. Claessen, and H. Svensson. Semi-formal dpraknt of
a fault-tolerant leader election protocol in Erlang. Uecture Notes
in Computer Sciengerolume 3395, pages 140 — 154. Springer, Feb
2005.

[6] T. Arts and L.A. Fredlund. Trace analysis of Erlang programs. In
Proceedings of the 2002 ACM SIGPLAN workshop on Erlpages
16-23. ACM Press, 2002.

[7] T. Arts and J. Hughes. Erlang/quickcheck. Ninth International
Erlang/OTP User Confereng@&lov. 2003.

[8] J. Blom and B. Jonsson. Automated test generation fanstréhl
Erlang applications. IERLANG '03: Proceedings of the 2003 ACM
SIGPLAN workshop on Erlangages 8-14, New York, NY, USA,
2003. ACM Press.

R. Carlsson, B. Gustavsson, E. Johansson, T. LindgreNyStrm,
M. Petterson, and R. Virding. Core Erlang 1.0 language §ipation.
Technical Report 2000-30, Department of Information Tedbay,
Uppsala University, November 2000.

[10] M. Dam and L.A. Fredlund. On the verification of open distributed
systems. ISAC '98: Proceedings of the 1998 ACM symposium on
Applied Computingpages 532-540, New York, NY, USA, 1998.
ACM Press.

[11] M. Dam, L.A. Fredlund, and D. Gurov. Toward parametric
verification of open distributed systems. @GOMPOS’97: Revised
Lectures from the International Symposium on Composiliynd he
Significant Differencepages 150-185, London, UK, 1998. Springer-
Verlag.

[12] L.-A. Fredlund. Towards a semantics for Erlang.Asundations of
Mobile Computation: A Post-Conference Satellite WorksbibBST
& TCS 99 Institute of Mathematical Sciences, Chennai, India, Dec
1999.

[9

—

[13] L.-A. Fredlund.A Framework for Reasoning about Erlang Co@D
thesis, Royal Institute of Technology, Stockholm, Swe@a91.

[14] L.-A. Fredlund, D. Gurov, and T. Noll. Semi-automated verifizat
of Erlang code. InASE '01: Proceedings of the 16th IEEE
International Conference on Automated Software Engimgepage
319, Washington, DC, USA, 2001. IEEE Computer Society.

[15] L.-A. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chuguno
A verification tool for ERLANG. International Journal on Software
Tools for Technology Transfer (STT#(4):405 — 420, Aug 2003.

[16] F. Huch. Verification of Erlang programs using abstiatérpretation
and model checking. IFCFP '99: Proceedings of the fourth ACM
SIGPLAN international conference on Functional programgni
pages 261-272, New York, NY, USA, 1999. ACM Press.

[17] M. Petterson. A definition of Erlang (draft). Manusdripepartment
of Computer and Information Science, Linkoping Universit996.

[18] M. Widera. Flow graphs for testing sequential erlanggrams. In
ERLANG '04: Proceedings of the 2004 ACM SIGPLAN workshop on
Erlang, pages 48-53, New York, NY, USA, 2004. ACM Press.

[19] U. Wiger. Fault tolerant leader electiohttp: //www.erlang.org/.

[20] C. Wikstrom. Distributed programming in Erlang. RASCO’'94,

First International Symposium on Parallel Symbolic Conapion,
Linz, Austria, Dec 1994.

