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Abstract
In this article we introduce a new implementation of a leader
election algorithm used in the generic leader behavior known as
gen leader.erl. The first open source release of the generic leader
[6] contains a few errors. The new implementation is based ona
different algorithm, which has been adopted to fulfill the existing
requirements. The testing techniques used to identify the errors in
the first implementation have also been used to check the imple-
mentation we propose here. We even extended the amount of test-
ing and used an additional new testing technique to increaseour
confidence in the implementation of this very tricky algorithm. The
new implementation passed all tests successfully. In this paper we
describe the algorithm and we discuss the testing techniques used
during the implementation.

Categories and Subject Descriptors D.2 [Software Engineering]

General Terms Algorithms, Verification

Keywords Erlang, leader election, distributed systems, imple-
mentation

1. Introduction
Many distributed applications are easy to implement if one has
one dedicated process to administer certain tasks. For example, one
process could poll all attached hardware devices to determine the
configuration of a distributed system, whereafter the othernodes
may then consult this process for the configuration information.
More generally, it is often useful to have a server process that is
in charge of keeping a consistent view of an aspect of the system
state. All nodes in the distributed system consult that server process
if they want information about the system state or if they want to
update the system state.

A dedicated server provides an easy way to introduce consen-
sus, synchronization and resource allocation in a distributed sys-
tem. The disadvantage with this solution is, though, that one in-
troduces a single point of failure in the system. In a fault-tolerant
setting, at least one stand-by node needs to be introduced. Taking
that thought one step further, several stand-by nodes may beintro-
duced, since that provides an even better protection against faults.
With either one or more stand-by nodes, each stand-by node has the
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problem of detecting when to become the active node. In fact,the
primary node (the one that is assumed to run the dedicated server if
nothing goes wrong) also has the problem to determine whether it
can actually take that role. This is caused by the fact that when this
primary node starts, one of the stand-by nodes may already have
decided that the primary node is dead and that it should run the
server instead.

This problem of having several nodes competing to perform
one central task is well-known and described in literature as the
leader election problem. A solution to this problem is an algorithm
that when its execution terminates, guarantees that a single node is
designated as a leader and every node knows whether it is a leader
or not. The leader is then assigned the role of the above described
dedicated server.

At least since the early seventies leader election algorithms for
all kind of settings have been described. Often these solutions are
stated in form of a multi-processor machine with shared memory
or by means of computers in a token-ring network. Most solutions
assume a perfect world in which no failures occur. Some solutions
assume possible failure of the communication others possible fail-
ure of the nodes. There are over10, 000 articles on the leader elec-
tion problem and it is not easy to find a solution among them that
fits the Erlang context well.

In our case, we are interested in a solution that is fault-tolerant
with respect to failing and restarting processes and failing and
restarting nodes. We assume Erlang nodes to have reliable com-
munication without lost messages (basically the TCP/IP setting in
which all nodes can directly communicate with all other nodes in
a reliable way). In the open source Erlang community there exists
an implementation of a leader election algorithm [6]. This imple-
mentation is based on an article written by Singh [4], but contains
numerous adaptations to the Erlang setting. The implementation
originates from the work at Ericsson with the AXD 301 telecom-
munication switch, but has been rewritten and turned into the OTP
behaviorgen leader. From a user point of view, the generic leader
behaves like a generic server with callback functions likecall and
cast. The intended use is that of having one generic leader per node
and clients access only the generic leader on their node. Thegeneric
leaders communicate with each other and forward all requests to
the chosen leader.

Thorough tests have shown that the above mentioned implemen-
tation, unfortunately, contains errors (see [1] for details). In some
rare circumstances, two leaders can be elected at the same time.
In addition, there is a possibility that the election of a newleader
stands in a deadlock. The system may run for years without show-
ing any failure, but there is always the potential danger that one day
the circumstances are exactly such that those faults occur.

After failing to repair the implementation we proceeded to make
a new implementation based on another algorithm. The new imple-
mentation is based on the article ‘Leader Election in Distributed



Systems with Crash Failures’ by Stoller [5]. Compared with Singh,
Stoller takes a slightly different approach to the leader election
problem, which seems to fit better into the Erlang setting. How-
ever, we still had to modify the algorithm, since it was designed for
a completely different situation.

We took care to supply the same interface for this new imple-
mentation as defined for the original, incorrect, implementation [6].
However, due to the differences in the implemented algorithms the
interface functions that return all alive nodes and the one returning
all dead nodes, could not be provided. Apart from that the behavior
of the new implementation should be, when viewed from the out-
side, the same as the behavior of the old implementation. Except
for the failures!

We have tested the implementation thoroughly, using both the
test method with abstract traces that revealed the errors inthe orig-
inal implementation [1], and Erlang QuickCheck [3] which isa
property-based random testing tool. While testing the implemen-
tation we discovered and successfully corrected a number oferrors
we made in the implementation. The new version ofgen leader is
available at
http://www.cs.chalmers.se/˜hanssv/leader election.

In Sect. 2 we explain the algorithm we have implemented, and
the adaptations that were made to make the algorithm useful in this
context. In Sect. 3 we describe the implementation and the testing
of the implementation. We conclude with discussion in Sect.4.

2. Algorithm
Sometime shortly after the first implementation [6] was written
Google was used to search for the source of Singh’s algorithm [4]
(on which the implementation was based). During that searchfor
leader election algorithms another interesting algorithmon leader
election in distributed systems with crash failures by Stoller [5]
popped up. It was judged to be a good, if not better, alternative to
Singh’s algorithm, but that had then already been implemented.

Much later, when an error was detected in the first implemen-
tation, and when we failed to repair this implementation based
on Singh’s article, we decided to try an implementation based on
Stoller’s algorithm. Here it is important to notice that thefailure of
Singh’s algorithm lies solely in the problem of adapting thealgo-
rithm to the Erlang environment, not in the algorithm itself. As an
example, Singh’s algorithm only deal with one election round, in
thegen leader a new election should be initiated when the elected
leader fail. It is often the case that algorithms described in articles
have assumptions and preconditions that are not fulfilled bythe tar-
get system, such as communication behavior and specific network
topologies. It is also often the case that the target system requires
additional functionality that is not included in the algorithm, such
as interface functions and error handling. Therefore, changes to the
algorithm are necessary. When dealing with complex algorithms,
such changes are dangerous, since one easily introduces an error,
which was exactly what had happened in thegen leader case.

Stoller’s algorithm, is based on a pre-known set of participating
processes with a globally known priority order. The algorithm also
depends on the fact that there exist a mechanism for detecting
inactive processes, for this we can use the ErlangMonitor. The
basic algorithm is both simple and elegant. When a process is
started, it first checks whether a process with higher priority is
active. If such a process exists, the process simply waits for one
of those processes to become the leader. If, on the other hand,
the present process is the active process with highest priority, the
process itself tries to become the leader. Becoming the leader is
done by making sure that all processes with lower priority either are
aware of its existence or are inactive. When all processes with lower
priority are informed, the process announces itself as the leader.
Periodically, the elected leader polls the inactive processes, if one

of the inactive processes is activated, the election process is simply
restarted.

There are actually two different algorithms described in Stoller’s
article, one with synchronous message passing and one with asyn-
chronous message passing. What is perhaps a bit surprising,and at
the same time shows how difficult it is to select a good candidate
algorithm for implementation, is that we choose the synchronous
algorithm, even though Erlang has asynchronous communication.
A more careful reading of the article reveals however, that the dif-
ference between the synchronous and the asynchronous algorithm
lies mostly in how the failure detection works (how node failures
are detected and reported). The Erlang monitor works in the same
way as the failure detection with synchronous message passing.
This shows that it is important to have a thorough understanding of
the inner workings of the implementation language.

We illustrate in detail how the algorithm works by an example
with three participation processes in Fig. 1. The processesare
named A,B and C, with priorityA > B > C, i.e. A has highest
priority.

1. A,B and C are all activated at the same time
- C: starts monitoring A and B,
B: starts monitoring A.

- A: no higher prioritized process alive,
starts monitoring B,
sends a ’halt’-message to B

- B: receives a ’halt’-message,
replies with an ’ack’-message

- A: receive ’ack’ from B,
starts monitoring C,
sends a ’halt’-message to C

- C: receives a ’halt’-message,
replies with an ’ack’-message

- A: receive ’ack’ from C,
all processes notified so A is the leader,
sends ’ldr’-message to B and C

- B,C: receive ’ldr’-message from A,
accepts A as the leader.

2. A and B are active and A is the elected leader,
C is activated.
- A: periodically sends a ’norm’-message to C
- C: receives a ’norm’-message from A,

replies with a ’notnorm’-message
- A: receives a ’notnorm’-message,

restarts the election procedure,
no higher prioritized process alive,
starts monitoring B,
sends a ’halt’-message to B
... (as in situation 1)

3. A and C are inactive, B is active.
- B: starts monitoring A
- B: receives a ’DOWN,A’-message from monitor,

no higher prioritized process alive,
starts monitoring C,
sends ’halt’-message to C

- B: receives a ’DOWN,C’-message from monitor,
all processes notified so B is the leader,
sends ’ldr’-message to A and C

4. B and C are active and B is the elected leader,
A is activated.
- A: no higher prioritized process alive,

starts monitoring B,
sends a ’halt’-message to B
... (as in situation 1)

Figure 1. Examples – Original behavior



2. A and B are active and A is the elected leader,
C is activated.
- A: periodically sends a ’norm’-message to C
- C: receives a ’norm’-message from A,

starts monitoring A,
replies with a ’notnorm’-message

- A: receives a ’notnorm’-message,
sends a ’ldr’-message to C

- C: receives a ’ldr’-message from A,
accepts A as the leader

Figure 2. Examples – Situation 2 without re-election

Unfortunately, this algorithm does not behave as is required
by a leader election in this case. The requirements for the leader
election implementation is that (1) it should quickly electa leader
among the active participating processes, (2) the elected process
stays the leader until it fails and (3) when the leader fails,a new
process should be elected automatically. The algorithm presented
by Stoller fulfills (1) and (3), but fails on (2). Instead whenever an
inactive process is activated, a new round of elections is started,
electing the process with highest priority as the leader. This is both
time consuming and inefficient from a message complexity point
of view, so in order to use this algorithm we have to change its
behavior.

We made this change in two steps, first we changed the algo-
rithm such that no new election would be started if a process with
lower priority than the leader was activated. This change isfairly
straightforward, and just requires a small modification to the behav-
ior when a newly activated process is polled by the elected leader.
Instead of restarting the election process, the newly activated pro-
cess is informed of who the leader is. If we reconsider the examples
in Fig. 1 situations 1, 3 and 4 are not changed, but in situation 2 we
avoid a re-election and instead proceed as in Fig. 2.

In addition we wanted to do something similar when a node
with higher priority than the present leader is activated. This how-
ever turned out to be much more complicated. The reason for the
complexity is the fact that a node with high priority is likely to con-
clude that there are no processes active with a higher priority and
therefore initiates a new election. (Note however that thisbehavior
is required, otherwise an election would never be initiatedin the
first place.) The basic trick here is to make sure that a process that
knows who the leader is will not surrender to the newly activated
process, instead it sends a reply saying who (he thinks) is the leader.
In this way, also a newly activated process with high priority can be
informed of who is the leader. The newly activated process finally
confirms the leadership with the leader. Nevertheless, there are still
many things that can go wrong, especially in situations where the
present leader fails in the middle of the information phase.If we
yet again reconsider the examples in Fig. 2, we see that situations
1 and 3 work as before, but as expected we do not get a re-election
in situation 4. This can be seen in Fig. 3

We also made some changes that did not affect the observable
functionality, but which reduced the number of messages sent by
the system.

3. Implementation and Testing
We first implemented the algorithm as agen server behavior, in
order to quickly evaluate if it was working as intended. Having
corrected several minor errors, most of them related to messages
that were not treated in all situations, we felt fairly sure that this
algorithm would work inside thegen leader. Replacing the old
algorithm was relatively easy, the only problem was the separation
into asafe loop (where the process execute during elections) and a
working loop (where the process execute when a leader is elected

4. B and C are active and B is the elected leader,
A is activated.
- A: no higher prioritized process alive,

starts monitoring B,
sends a ’halt’-message to B

- B: receives a ’halt’-message,
replies with an ’hasLeader,B’-message

- A: receive ’hasLeader,B’ from B,
starts monitoring B,
sends an ’isLeader’-message to B

- B: receive ’isLeader’ from A,
sends ’ldr’-message to A

- A: receive ’ldr’-message from B,
accepts B as the leader.

Figure 3. Examples – Situation 4 without re-election

and which basically is the same as the loop in a generic server).
This separation made it possible to do some simplifications in the
message receiving code, and introduced a couple of new errors.

Another problem is the fact that the new algorithm is fundamen-
tally different from the old one. This leads to some problemswhen
trying to be compatible with the existing implementation. In par-
ticular we realized that thequery-functionsalive (which returns all
active participating processes) anddown (which returns all inac-
tive processes) could not be implemented. This is because the new
algorithm does not keep track of this information at all times, so
the information returned by these functions is not reliable. Except
from this, we managed to implement the algorithm without changes
to the interface.

Leader election is a well-known and clearly defined problem,
which means that the requirements are also well defined: (1) Even-
tually, a leader should be elected, and (2) At most one of the partic-
ipants is considered the leader. These properties are also stated in
Stoller’s article [5]. We tested the implementation with two differ-
ent methodologies, first we used the method with abstracted traces,
as we describe in [1] and second we used Erlang QuickCheck pre-
sented in [3].

3.1 Testing with trace recording

The built-in trace functionality in Erlang is a very useful tool when
testing an implementation. However, the raw trace data has aten-
dency to get very verbose, containing lots of events and alsoa lot
of data per event. Manual inspection of traces is therefore often
both tedious and time consuming, and alternative approaches have
been proposed. In [2], one approach is presented whereabstraction
functions are applied to state based trace data, in order to remove
unnecessary data and reduce the state space. The state spaceis re-
duced since different concrete states will be reduced to thesame
abstract state when the abstraction function is applied. While col-
lapsing different concrete states to the same abstract state, cyclic
behaviors can be detected. The abstract state space is also visual-
ized, something that gives a good intuition about the inner workings
of an implementation.

This abstract trace approach is taken even further in [1], where
we demonstrate the effectiveness of the method by testing the first
leader election implementation [6] based on Singh’s algorithm. In
[1] we also introduce a small language for constructing abstraction
functions, as well as checking LTL-properties for the abstract state
space. To test the leader election implementation we stimulated the
system by arbitrarily killing and reviving nodes, and by arbitrarily
delaying messages sent between processes.

This test method initially revealed a couple of trivial implemen-
tation errors, but when those were corrected all tests whereexe-
cuted without errors. That is the new implementation passedall
the tests, the same tests during which the previous implementation



failed in two cases. However, this test method does not change the
scheduler in the runtime system, and since the Erlang scheduler
is deterministic, it seemed quite possible that there existexecution
paths not exercised by the trace recording testing technique.

3.2 Testing with QuickCheck

Therefore we decided to also test the implementation with Erlang
QuickCheck, presented by Arts and Hughes in [3]. QuickCheckis
a property-based tool for random testing. Developers writeprop-
erties in a restricted logic, and then invoke QuickCheck to test the
property in a large number of cases. QuickCheck tests concurrent
programs by collecting a trace of events, which should have the
properties the developer specifies. The events are defined byin-
strumenting the code under test with calls to the QuickCheckfunc-
tion event. QuickCheck delays these calls randomly, thus in effect
overrides the Erlang scheduler and forces a random scheduleon
the system under test. This can elicit faulty behavior that would ap-
pear only very rarely with the normal scheduler, which is exactly
what we want to test here. Testing the leader election implemen-
tation was done by randomly killing and reviving leader election
processes.

Using QuickCheck to test the second implementation, we could
not produce any trace where the properties were violated. Never-
theless, and much to our surprise, we could observe some faulty
behavior, namely that a leader election process crashed unexpect-
edly from time to time. This did not lead to any faulty behaviour,
but it indicated that something was wrong.

Closer analysis revealed a very tricky error, which would have
been extremely unlikely to be found without control of the schedul-
ing. The problematic situation occurs whenever a process A is
about to contact another process B. To do this in a controlledway,
process A first request a monitor on process B before sending the
message. What can occur now is that process B is down when pro-
cess A requests the monitor, but alive just some time later when
process A send the message. In this case, process A receive both
a failure-notification and a message reply. This situation was over-
seen in the implementation and lead to a crash. Luckily, the error
could easily be corrected.

In this example we can see how important it is to have control of
the scheduling, since this situation occurred frequently (like once
every 150 tests) while testing with QuickCheck, but could not at
all be observed when we tested the implementation with the trace
recording technique.

3.3 Coverage

When working with test methods, the issue of coverage is central.
Coverage should provide a measure of how exhaustively one has
exercised the system, and is therefore important when evaluating
the results of testing. Though it is very rare that a coveragemeasure
can tell when we have tested enough, rather the coverage measure
will warn of potential situations when we havenot tested enough.

In [1] we discuss some coverage measures for the trace record-
ing technique, but those measures mostly deal with quantities
in the abstracted state space and are hard to compare with the
QuickCheck tests. Instead we choose to look at how many nodes
that where killed, and at what stage in the election process the node
were killed.

In Tab. 1 we can see: the coverage result (labeledQuickCheck)
for a QuickCheck run with 5 nodes, average numbers (labeledQC
average), and as a comparison results for a run with the trace
recording technique (labeledTrace rec). The first column shows
the total number of killed nodes, second column the number of
nodes killed during an election, third column the number of nodes
killed when elected as leader, and fourth column the number of
nodes killed when being surrendered to a leader. In the coverage

results we can note a difference between the two techniques,since
we do not influence the scheduler in the trace recording technique
it is quite rare that we manage to kill a node in the middle of
the election process (merely 4% of the kills) compared to the
QuickCheck approach where this happens a lot more frequently
(almost 25 % of the kills).

Other coverage measures that are often discussed includecode
coverage andpath coverage. Code coverage is a very basic cover-
age measure, that only measures whether (or how many times) a
certain line of code has been executed. This simple measure is use-
less here, since it is the complicated interaction of several differ-
ent instances of the implementation that is studied. Path coverage
is therefore more interesting, since it measure how many different
paths that has been taken through the code. Unfortunately however,
path coverage is hard to define in a functional language such as Er-
lang since paths does not exist in the same way as for an imperative
language like C or Java.

4. Discussion
Implementing a new leader election algorithm was very interest-
ing from more than one point of view. Not only is it a challenging
intellectual problem, it also highlights several interesting and prob-
lematic situations that may occur in industry. For the majority of
algorithmic problems that arise in practical software development
today, there exist books and papers describing possible solutions.
For a software engineer, it is often a non-trivial task to first find the
right source of information, and then adopt the described solution to
the specific setting at hand. Often software errors are made because
(1) the wrong algorithms were chosen, or (2) the right algorithms
were adapted in the wrong way.

Why is it such a hard problem to choose a good algorithm? Al-
gorithm descriptions, and then especially formally verified algo-
rithms, are often presented in a theoretical way and work only in
a specific setting. It is often the case that the prerequisites stated
in the article do not fit into the implementation language. Itis also
often the case that changes must be made to the algorithm in or-
der to fulfill the specific requirements, such changes include error-
handling and interface. Therefore it is a hard but also crucial prob-
lem to select a good algorithm. It is a task that require not only a
thorough understanding of the problem, but also a good insight in
the inner workings of the implementation language.

One example of this is the error found with QuickCheck, our er-
roneous implementation closely followed the algorithm in the pa-
per. Nevertheless, the implementation turned out to be incorrect.
Does this mean that the same error is also present in the article? No,
Stoller’s article [5] is not very precise about the semanticassump-
tions made regarding link requests between processes. Therefore,
one has to assume that there is a difference in how the monitoring
works, and that this is the source of the error. This clearly shows the
difficulties of bridging the semantics from the article, where under-
lying assumptions often hide important and problematic issues, to
the implementation language.

Verifying fault-tolerant distributed systems is an extremely diffi-
cult task. It is difficult and time consuming to use verification tech-
niques such as model checking, instead testing is the commonly
used method. Here, we have used two different testing techniques.
In many ways these techniques are rather similar; both use random
testing, and both methods use traces. The big difference between
the methods are the way we control the scheduler, which in turn
affects the execution paths explored in the tests. The concrete test
results show that both methods are useful, we found an error with
QuickCheck that was not found with the trace recording technique.
On the other hand when writing the implementation it was very
useful to see the visualizations from the trace recording technique,
both to correct errors and to gain insight in the implementation.



Killed nodes in election as leader surrendered
QuickCheck 1601 379 102 1120
QC average 19.3 4.6 1.2 13.4

Trace rec. 101 4 11 86

Table 1. Coverage results

Our work resulted in a new implementation of the generic leader
behavior. This implementation is thoroughly tested and no errors
could be identified. For some very critical applications, one might
want to invest in a formal verification of the presented application,
but most applications would not require such thorough mathemati-
cal analysis.
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