A New Leader Election implementation

Hans Svensson

Dept. of Computing Science
Chalmers University of Technology
Gothenburg, Sweden

hanssv@cs.chalmers.se

Abstract

In this article we introduce a new implementation of a leader
election algorithm used in the generic leader behavior knaw
gen_leader.erl. The first open source release of the generic leader
[6] contains a few errors. The new implementation is based on
different algorithm, which has been adopted to fulfill thésérg
requirements. The testing techniques used to identify tfegsein

the first implementation have also been used to check thesimpl
mentation we propose here. We even extended the amount-of tes
ing and used an additional new testing technique to increase
confidence in the implementation of this very tricky algomit The
new implementation passed all tests successfully. In tagiepwe
describe the algorithm and we discuss the testing techsigsed
during the implementation.

Categories and Subject Descriptors D.2 [Software Engineering]
General Terms Algorithms, Verification

Keywords Erlang, leader election, distributed systems, imple-
mentation

1. Introduction

Many distributed applications are easy to implement if oas h
one dedicated process to administer certain tasks. Forp&aone
process could poll all attached hardware devices to deterihie
configuration of a distributed system, whereafter the otiaetes
may then consult this process for the configuration inforomat
More generally, it is often useful to have a server proceas ith
in charge of keeping a consistent view of an aspect of thesyst
state. All nodes in the distributed system consult thatexgyxocess
if they want information about the system state or if they tan
update the system state.

A dedicated server provides an easy way to introduce consen-

sus, synchronization and resource allocation in a diggibsys-
tem. The disadvantage with this solution is, though, tha n
troduces a single point of failure in the system. In a faoléftant
setting, at least one stand-by node needs to be introdue&dhdr
that thought one step further, several stand-by nodes maytroe
duced, since that provides an even better protection againss.
With either one or more stand-by nodes, each stand-by nadnba

Permission to make digital or hard copies of all or part of thiork for personal or
classroom use is granted without fee provided that copesatrmade or distributed
for profit or commercial advantage and that copies bear titiseand the full citation
on the first page. To copy otherwise, to republish, to posteswess or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’05 September 25, 2005, Tallinn, Estonia.
Copyright(© 2005 ACM 1-59593-066-3/05/0009. . . $5.00.

Thomas Arts

IT University of Gteborg
Gothenburg, Sweden

thomas.arts@ituniv.se

problem of detecting when to become the active node. In faet,
primary node (the one that is assumed to run the dedicateersér
nothing goes wrong) also has the problem to determine whédthe
can actually take that role. This is caused by the fact thanwhis
primary node starts, one of the stand-by nodes may already ha
decided that the primary node is dead and that it should ren th
server instead.

This problem of having several nodes competing to perform
one central task is well-known and described in literatig¢ha
leader election problem. A solution to this problem is an algorithm
that when its execution terminates, guarantees that sesiugle is
designated as a leader and every node knows whether it islerlea
or not. The leader is then assigned the role of the aboveidedcr
dedicated server.

At least since the early seventies leader election alguostfor
all kind of settings have been described. Often these solsitare
stated in form of a multi-processor machine with shared nigmo
or by means of computers in a token-ring network. Most sohsti
assume a perfect world in which no failures occur. Some isolsit
assume possible failure of the communication others plestb-
ure of the nodes. There are ougr, 000 articles on the leader elec-
tion problem and it is not easy to find a solution among therh tha
fits the Erlang context well.

In our case, we are interested in a solution that is faultreoit
with respect to failing and restarting processes and faidnd
restarting nodes. We assume Erlang nodes to have reliabie co
munication without lost messages (basically the TCP/IBnggin
which all nodes can directly communicate with all other roie
a reliable way). In the open source Erlang community thergt®x
an implementation of a leader election algorithm [6]. Thgple-
mentation is based on an article written by Singh [4], buttaims
numerous adaptations to the Erlang setting. The implertienta
originates from the work at Ericsson with the AXD 301 teleeom
munication switch, but has been rewritten and turned inedQmP
behaviorgen_leader. From a user point of view, the generic leader
behaves like a generic server with callback functions ti&é and
cast. The intended use is that of having one generic leader pexr nod
and clients access only the generic leader on their nodegdmeric
leaders communicate with each other and forward all reguest
the chosen leader.

Thorough tests have shown that the above mentioned implemen
tation, unfortunately, contains errors (see [1] for dejailn some
rare circumstances, two leaders can be elected at the same ti
In addition, there is a possibility that the election of a Header
stands in a deadlock. The system may run for years withowt-sho
ing any failure, but there is always the potential dangerdha day
the circumstances are exactly such that those faults occur.

After failing to repair the implementation we proceeded &k
a new implementation based on another algorithm. The neveimp
mentation is based on the article ‘Leader Election in Distied

Systems with Crash Failures’ by Stoller [5]. Compared wittng8,
Stoller takes a slightly different approach to the leadectbn
problem, which seems to fit better into the Erlang settingwHo
ever, we still had to modify the algorithm, since it was desigfor
a completely different situation.

We took care to supply the same interface for this new imple-
mentation as defined for the original, incorrect, impleratnn [6].
However, due to the differences in the implemented algaritthe
interface functions that return all alive nodes and the eherning
all dead nodes, could not be provided. Apart from that thexbieln
of the new implementation should be, when viewed from the out
side, the same as the behavior of the old implementationefiExc
for the failures!

We have tested the implementation thoroughly, using bath th
test method with abstract traces that revealed the errdheiarig-
inal implementation [1], and Erlang QuickCheck [3] whichds
property-based random testing tool. While testing the @nan-
tation we discovered and successfully corrected a numbenrofs
we made in the implementation. The new versiogaf_leader is
available at
http://www.cs.chalmers.se/“hanssv/leader_election.

In Sect. 2 we explain the algorithm we have implemented, and
the adaptations that were made to make the algorithm usefuis
context. In Sect. 3 we describe the implementation and #tente
of the implementation. We conclude with discussion in Séct.

2. Algorithm

Sometime shortly after the first implementation [6] was terit
Google was used to search for the source of Singh’s algorithm [4]
(on which the implementation was based). During that sefmch
leader election algorithms another interesting algoritmreader
election in distributed systems with crash failures by 18tg]5]
popped up. It was judged to be a good, if not better, alteraat
Singh’s algorithm, but that had then already been implestent
Much later, when an error was detected in the first implemen-
tation, and when we failed to repair this implementationedas
on Singh’s article, we decided to try an implementation Hase
Stoller’s algorithm. Here it is important to notice that fadure of
Singh’s algorithm lies solely in the problem of adapting #igo-
rithm to the Erlang environment, not in the algorithm itsél§ an
example, Singh'’s algorithm only deal with one election rabuim
the gen_leader a new election should be initiated when the elected
leader fail. It is often the case that algorithms descrilvedrticles
have assumptions and preconditions that are not fulfillethbyar-
get system, such as communication behavior and specifionetw
topologies. It is also often the case that the target sysezpines
additional functionality that is not included in the algbm, such
as interface functions and error handling. Therefore, gbarto the
algorithm are necessary. When dealing with complex algars,
such changes are dangerous, since one easily introducesoan e
which was exactly what had happened in gee_leader case.
Stoller’s algorithm, is based on a pre-known set of parétipm
processes with a globally known priority order. The aldoritalso
depends on the fact that there exist a mechanism for degectin
inactive processes, for this we can use the Erldgnitor. The

basic algorithm is both simple and elegant. When a process is

started, it first checks whether a process with higher pyias
active. If such a process exists, the process simply waitsrie

of the inactive processes is activated, the election psisesimply
restarted.

There are actually two different algorithms described wil8t's
article, one with synchronous message passing and one syith a
chronous message passing. What is perhaps a bit surpasidgt
the same time shows how difficult it is to select a good candida
algorithm for implementation, is that we choose the syncbus
algorithm, even though Erlang has asynchronous commumricat
A more careful reading of the article reveals however, thatdif-
ference between the synchronous and the asynchronouétfatgor
lies mostly in how the failure detection works (how nodefegls
are detected and reported). The Erlang monitor works in dhees
way as the failure detection with synchronous message nmassi
This shows that it is important to have a thorough underéhanof
the inner workings of the implementation language.

We illustrate in detail how the algorithm works by an example
with three participation processes in Fig. 1. The processes
named A,B and C, with prioritd > B > C, i.e. A has highest
priority.

1. A,B and C are all activated at the same time
- starts monitoring A and B,
starts monitoring A.
no higher prioritized process alive,
starts monitoring B,
sends a ’halt’-message to B
receives a ’halt’-message,
replies with an ’ack’-message
: receive ’ack’ from B,
starts monitoring C,
sends a ’halt’-message to C
: receives a ’halt’-message,
replies with an ’ack’-message
: receive ’ack’ from C,
all processes notified so A is
sends ’ldr’-message to B and C
- B,C: receive ’ldr’-message from A,
accepts A as the leader.

C:
B:
A:

|
=

the leader,

2. A and B are active and A is the elected leader,
C is activated.
- A: periodically sends a ’norm’-message to C
- C: receives a ’norm’-message from A,
replies with a ’notnorm’-message
receives a ’notnorm’-message,
restarts the election procedure,
no higher prioritized process alive,
starts monitoring B,
sends a ’halt’-message to B
. (as in situation 1)

- A:

3. A and C are inactive, B is active.

- B: starts monitoring A
B: receives a ’DOWN,A’-message from monitor,
no higher prioritized process alive,
starts monitoring C,
sends ’halt’-message to C

: receives a ’DOWN,C’-message from monitor,
all processes notified so B is the leader,
sends ’ldr’-message to A and C

of those processes to become the leader. If, on the other, hand#: B and C are active and B is the elected leader,

the present process is the active process with highesttgritire
process itself tries to become the leader. Becoming theeteiad
done by making sure that all processes with lower priorityeziare
aware of its existence or are inactive. When all processtdavirer
priority are informed, the process announces itself as ehddr.
Periodically, the elected leader polls the inactive preessif one

A is activated.
- A: no higher prioritized process alive,
starts monitoring B,
sends a ’halt’-message to B
. (as in situation 1)

Figure 1. Examples — Original behavior

2. A and B are active and A is the elected leader,
C is activated.
- A: periodically sends a ’norm’-message to C
- C: receives a ’norm’-message from A,
starts monitoring A,
replies with a ’notnorm’-message
: receives a ’notnorm’-message,
sends a ’ldr’-message to C
: receives a ’ldr’-message from A,
accepts A as the leader

Figure2. Examples — Situation 2 without re-election

Unfortunately, this algorithm does not behave as is require
by a leader election in this case. The requirements for theele
election implementation is that (1) it should quickly eladeader
among the active participating processes, (2) the eleateckps
stays the leader until it fails and (3) when the leader failsew
process should be elected automatically. The algorithregmted
by Stoller fulfills (1) and (3), but fails on (2). Instead wieer an
inactive process is activated, a new round of electionsagest,
electing the process with highest priority as the leadeis ®both
time consuming and inefficient from a message complexityipoi

of view, so in order to use this algorithm we have to change its

behavior.

We made this change in two steps, first we changed the algo-

rithm such that no new election would be started if a procatis w
lower priority than the leader was activated. This chandaiity
straightforward, and just requires a small modificatiorhtoliehav-
ior when a newly activated process is polled by the electedde
Instead of restarting the election process, the newly aetil/pro-
cess is informed of who the leader is. If we reconsider thenges
in Fig. 1 situations 1, 3 and 4 are not changed, but in sitn&iwe
avoid a re-election and instead proceed as in Fig. 2.

In addition we wanted to do something similar when a node

with higher priority than the present leader is activatelisThow-
ever turned out to be much more complicated. The reason éor t
complexity is the fact that a node with high priority is lilgeb con-
clude that there are no processes active with a higher priand
therefore initiates a new election. (Note however thatlleisavior

is required, otherwise an election would never be initiagtethe
first place.) The basic trick here is to make sure that a psoited
knows who the leader is will not surrender to the newly attiga
process, instead it sends a reply saying who (he thinksgiletider.

In this way, also a newly activated process with high prjotén be
informed of who is the leader. The newly activated procesalfin
confirms the leadership with the leader. Neverthelesse ther still
many things that can go wrong, especially in situations wliee
present leader fails in the middle of the information phasee
yet again reconsider the examples in Fig. 2, we see thatisitisa
1 and 3 work as before, but as expected we do not get a reeglecti
in situation 4. This can be seen in Fig. 3

4. B and C are active and B is the elected leader,
A is activated.
- A: no higher prioritized process alive,
starts monitoring B,
sends a ’halt’-message to B
: receives a ’halt’-message,
replies with an ’hasLeader,B’-message
: receive ’hasLeader,B’ from B,
starts monitoring B,
sends an ’isLeader’-message to B
: receive ’isLeader’ from A,
sends ’ldr’-message to A
: receive ’ldr’-message from B,
accepts B as the leader.

Figure3. Examples — Situation 4 without re-election

and which basically is the same as the loop in a generic Server
This separation made it possible to do some simplificatiorthe
message receiving code, and introduced a couple of newserror

Another problem is the fact that the new algorithm is fundame
tally different from the old one. This leads to some problevhen
trying to be compatible with the existing implementation.fdar-
ticular we realized that thguery-functionsalive (which returns all
active participating processes) adawn (which returns all inac-
tive processes) could not be implemented. This is becagsectiv
algorithm does not keep track of this information at all tsnso
the information returned by these functions is not reliaBbecept
from this, we managed to implement the algorithm withoutihgjes
to the interface.

Leader election is a well-known and clearly defined problem,
which means that the requirements are also well defined:yé@p-£
tually, a leader should be elected, and (2) At most one of &niégp
ipants is considered the leader. These properties are talsa $n
Stoller’s article [5]. We tested the implementation witthotdiffer-
ent methodologies, first we used the method with abstracieds,

p aswe describe in [1] and second we used Erlang QuickCheek pre

sented in [3].

3.1 Testing with tracerecording

The built-in trace functionality in Erlang is a very usefabt when
testing an implementation. However, the raw trace data hias-a
dency to get very verbose, containing lots of events andalso
of data per event. Manual inspection of traces is therefdeno
both tedious and time consuming, and alternative apprcacéree
been proposed. In [2], one approach is presented vefosteaction
functions are applied to state based trace data, in order to remove
unnecessary data and reduce the state space. The statéssgace
duced since different concrete states will be reduced ts#mee
abstract state when the abstraction function is appliedle/¢bl-
lapsing different concrete states to the same abstrae, sigtlic
behaviors can be detected. The abstract state space isigisd- v

We also made some changes that did not affect the observablelZ€d; Something that gives a good intuition about the inrerkings

functionality, but which reduced the number of messages sgn
the system.

3. Implementation and Testing

We first implemented the algorithm asgan_server behavior, in
order to quickly evaluate if it was working as intended. Hhayi
corrected several minor errors, most of them related to agess
that were not treated in all situations, we felt fairly sunattthis
algorithm would work inside theen_leader. Replacing the old
algorithm was relatively easy, the only problem was the sz

of an implementation.

This abstract trace approach is taken even further in [1], where
we demonstrate the effectiveness of the method by testa{jrt
leader election implementation [6] based on Singh’s atgori In
[1] we also introduce a small language for constructingralstion
functions, as well as checking LTL-properties for the sdodtstate
space. To test the leader election implementation we stitedlthe
system by arbitrarily killing and reviving nodes, and by iadrily
delaying messages sent between processes.

This test method initially revealed a couple of trivial imapien-
tation errors, but when those were corrected all tests wlege

into asafe_loop (where the process execute during elections) and a cuted without errors. That is the new implementation pasded
working loop (where the process execute when a leader is elected the tests, the same tests during which the previous impletien

failed in two cases. However, this test method does not ehérey results we can note a difference between the two technigires
scheduler in the runtime system, and since the Erlang stdredu we do not influence the scheduler in the trace recording tqukn

is deterministic, it seemed quite possible that there existution it is quite rare that we manage to kill a node in the middle of

paths not exercised by the trace recording testing teckniqu the election process (merely 4% of the kills) compared to the
QuickCheck approach where this happens a lot more frequentl

3.2 Testing with QuickCheck (almost 25 % of the kills).

Therefore we decided to also test the implementation witarigr Other coverage measures that are often discussed inatdde

QuickCheck, presented by Arts and Hughes in [3]. QuickChgck ~ COverage andpath coverage. Code coverage is a very basic cover-

a property-based tool for random testing. Developers vmite- age measure, that only measures whether (or how many times) a

erties in a restricted logic, and then invoke QuickCheclest the certain line of code has been executed. This simple measuset

property in a large number of cases. QuickCheck tests cogmaur Iess_ here, since it is_the complicated inte_ractior} of sé\differ-
programs by collecting a trace of events, which should hiee t €Nt instances of the implementation that is studied. Patbrege
properties the developer specifies. The events are definéd-by IS therefore more interesting, since it measure how marigreifit
strumenting the code under test with calls to the QuickClieck- paths that has been taken through the code. Unfortunatelg\eo,
tion event. QuickCheck delays these calls randomly, thus in effect Path coverage is hard to define in a functional language ssiEfr-a
overrides the Erlang scheduler and forces a random schedule 12ng since paths does not exist in the same way as for an ithigera
the system under test. This can elicit faulty behavior thaile ap- language like C or Java.
pear only very rarely with the normal scheduler, which isatiya . .
what we want to test here. Testing the leader election imptem 4. Discussion
tation was done by randomly killing and reviving leader &tat Implementing a new leader election algorithm was very #ger
processes. . . ing from more than one point of view. Not only is it a challemgi
Using QuickCheck to test the second implementation, wedcoul jnte|lectual problem, it also highlights several inteiegand prob-
not produce any trace where th.e properties were violatede™Ne lematic situations that may occur in industry. For the migjaf
theless, and much to our surprise, we could observe somgy faul algorithmic problems that arise in practical software depeent

behavior, namely that a leader election process crashegecte today, there exist books and papers describing possibleics.

edly from time to time. This did not lead to any faulty behawio £or 5 software engineer, it is often a non-trivial task t firsd the

but it indicated that something was wrong. , right source of information, and then adopt the describégtisn to
Closer analysis revealed a very tricky error, which wouldéha he specific setting at hand. Often software errors are medatise

peen extremely unllll<elylto bg found without control of theedul- ~ (1) the wrong algorithms were chosen, or (2) the right atharis

ing. The problematic situation occurs whenever a process A i \ere adapted in the wrong way.

about to contact another process B. To do this in a contrelizyg Why is it such a hard problem to choose a good algorithm? Al-

process A first request a monitor on process B before senhing t gorithm descriptions, and then especially formally vedfego-
message. What can occur now is that process B is down when pro-rithms are often presented in a theoretical way and worl onl
cess A requests the monitor, but alive just some time lat@mwh 5 specific setting. It is often the case that the preregsisitated
process A send the message. In this case, process A recéive bo i, the article do not fit into the implementation languages klso

a failure-notification and a message reply. This situatias wver- often the case that changes must be made to the algorithm in or
seen in the implementation and lead to a crash. Luckily, th&e e to fulfill the specific requirements, such changes irelextor-
could easily be corrected. _ o handling and interface. Therefore it is a hard but also afymiob-

In this example we can see how important itis to have confrol 0 e to select a good algorithm. It is a task that require ndy an
the scheduling, since this situation occurred frequeriitkg ©Once thorough understanding of the problem, but also a good finiy
every 150 tests) while testing with QuickCheck, .but cpul(ﬂ aio the inner workings of the implementation language.
all be observed when we tested the implementation with tetr One example of this is the error found with QuickCheck, our er
recording technique. roneous implementation closely followed the algorithmhe pa-

per. Nevertheless, the implementation turned out to beriacb
Does this mean that the same error is also present in thieario,
When working with test methods, the issue of coverage issaent Stoller’s article [5] is not very precise about the semaatisump-
Coverage should provide a measure of how exhaustively oge ha tions made regarding link requests between processesefoher
exercised the system, and is therefore important when aagj one has to assume that there is a difference in how the migtor
the results of testing. Though it is very rare that a coveragasure works, and that this is the source of the error. This cledrtns the
can tell when we have tested enough, rather the coverageureeas difficulties of bridging the semantics from the article, whender-

3.3 Coverage

will warn of potential situations when we hawet tested enough. lying assumptions often hide important and problematiogssto
In [1] we discuss some coverage measures for the trace record the implementation language.
ing technique, but those measures mostly deal with questiti Verifying fault-tolerant distributed systems is an extegyrdiffi-

in the abstracted state space and are hard to compare with thecult task. It is difficult and time consuming to use verificatiech-
QuickCheck tests. Instead we choose to look at how many nodesniques such as model checking, instead testing is the cofgmon

that where killed, and at what stage in the election prodesadde used method. Here, we have used two different testing tqakgi
were killed. In many ways these techniques are rather similar; both usiona
In Tab. 1 we can see: the coverage result (lab&eitk Check) testing, and both methods use traces. The big differencecket

for a QuickCheck run with 5 nodes, average numbers (lab@léd the methods are the way we control the scheduler, which m tur
average), and as a comparison results for a run with the trace affects the execution paths explored in the tests. The etmtest
recording technique (labeleétrace rec). The first column shows results show that both methods are useful, we found an eiitbr w
the total number of killed nodes, second column the number of QuickCheck that was not found with the trace recording tepkn
nodes killed during an election, third column the numberades On the other hand when writing the implementation it was very
killed when elected as leader, and fourth column the number o useful to see the visualizations from the trace recordingrtgue,
nodes killed when being surrendered to a leader. In the ageer both to correct errors and to gain insight in the impleméoitat

Killed nodes in election asleader surrendered
QuickCheck 1601 379 102 1120
QC average 19.3 4.6 1.2 13.4
Trace rec. 101 4 11 86

Table 1. Coverage results

Our work resulted in a new implementation of the genericdéead
behavior. This implementation is thoroughly tested and morge
could be identified. For some very critical applicationse onight
want to invest in a formal verification of the presented aggilon,
but most applications would not require such thorough nmattie
cal analysis.

5. Acknowledgments

Thanks to UIf Wiger, co-author of the firgen_leader implemen-
tation, and John Hughes, implementer of Erlang QuickChalda

[2] T. Arts and L.A. Fredlund. Trace analysis of Erlang programs. In
Proceedings of the 2002 ACM S GPLAN workshop on Erlang, pages
16-23. ACM Press, 2002.

[3] T. Arts and J. Hughes. Erlang/quickcheck. Nimth International
Erlang/OTP User Conference, Nov. 2003.

[4] G. Singh. Leader election in the presence of link faifureln
|EEE Transactions on Parallel and Distributed Systems, Vol 7. IEEE
computer society, 1996.

[5] S. Stoller. Leader election in distributed systems veitash failures.
Technical Report 481, Computer Science Dept., Indiana éisity,
May 1997. Revised July 1997.

thanks to Koen Claessen for providing valuable comments and [6] U. Wiger. Fault tolerant leader electiohttp:/ /www.erlang.org/.

ideas.

References

[1] T. Arts, K. Claessen, and H. Svensson. Semi-formal dpraknt of
a fault-tolerant leader election protocol in erlang.Lktture Notesin

Computer Science, volume 3395, pages 140 — 154. Springer, Feb 2005.

