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Abstract
In order to formally reason about distributed Erlang systems, it is
necessary to have a formal semantics. In a previous paper we have
proposed such a semantics for distributed Erlang. However, recent
work with a model checker for Erlang revealed that the previous
attempt was not good enough. In this paper we present a more ac-
curate semantics for distributed Erlang. The more accurate seman-
tics includes several modifications and additions to the semantics
for distributed Erlang proposed by Claessen and Svensson in 2005,
which in turn is an extension to Fredlund’s formal single-node se-
mantics for Erlang. The most distinct addition to the previous se-
mantics is the possibility to correctly model disconnected nodes.
Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]

General Terms Languages, Theory, Verification

Keywords Erlang, semantics, distributed systems, verification,
model checking

1. Introduction
Software systems written in Erlang are often running in a dis-
tributed environment, and are often highly concurrent and dy-
namic in nature. Something that has lately become even more em-
phasised by the introduction of multi-core and SMP1 computers.
And although Erlang with its Concurrency Oriented Programming
paradigm is particularly suited for writing such applications, ex-
perience still shows that concurrent and fault-tolerant software is
hard to write, test and verify. Because of this, several approaches
have been proposed for testing [6, 7, 9, 21, 5] Erlang programs and
also a lot of work has been done on formal verification of Erlang
programs [19, 18, 3, 16].

Since the history of Erlang starts in industry, and not in a uni-
versity, Erlang is very much defined in terms of its implementation.
However, when working with formal verification a formal seman-
tics is almost indispensable, and doing verification without a formal
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semantics is really hard. In 1999 Fredlund proposed a formal se-
mantics for Erlang [14], and the semantics is described in detail in
[15]. Fredlund’s semantics is a small-step operational semantics. It
is constructed in a simple, easy to understand layered fashion. The
semantics has been used as a basis in several different verification
projects, such as semi-formal verification of Erlang code [17] and
model checking a resource manager [18]. Fredlund’s semantics has
also been a basis for the development of a theorem prover [18] and
a translation of Erlang into a language that can be model checked
[4].

In 2004 two previously unknown errors was discovered in an
open source implementation in Erlang of a leader election algo-
rithm [22, 5]. It turned out that both errors were caused by difficult
to foresee chains of events related to the arrival order of messages in
the distributed environment. It also turned out that the errors were
specific to a multi-node setting. That is, the errors could only be
found when different parts of the system run on different nodes.
Thus, contrary to the Erlang idea that distribution should be trans-
parent, there is a real behavioral difference between single-node
and multi-node systems.

During the analysis of the errors in the leader election imple-
mentation, we realized that it is impossible to reason about this type
of errors in Fredlund’s semantics. The semantics does not contain
the concept of nodes, and all processes are localized at the same
run-time system. This also means that it is impossible to detect this
kind of multi-node errors in a model checker based on Fredlund’s
single-node semantics.

Therefore we proposed an extension of the semantics into a
distributed (multi-node) semantics for Erlang [11]. In that paper
we added a distributed layer on top of the single node semantics,
and were able to successfully model multi-node programs in the
extended semantics. In the paper we also warned the community of
potential pit-falls with testing and verification using a single-node
semantics.

The semantics for distributed Erlang have since been used in
the implementation of a model checker for Erlang (McErlang,
[16]). From the work with the model checker we could observe
that the proposed multi-node semantics was incomplete. (With
incomplete we mean that there are possible behaviors in the Erlang
run-time system, which can not be described by the semantics.) The
incompleteness stems mainly from the Erlang behavior in the case
of node disconnect. Two Erlang nodes can become disconnected
from each other if the link between them fails, when this happens
both involved nodes regard the other node as dead. This does have
some interesting consequences when the nodes later re-connect.
Such behavior can not be modeled in the multi-node semantics
we proposed earlier. Since the publication of the semantics for
distributed Erlang we have also discovered a few minor errors in the
semantics as well as some rather embarrassing inelegancies in the
presentation of the semantic rules. Therefore we have re-structured
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and extended the distributed layer and now propose a more accurate
multi-node semantics.

In order to make this paper self contained and the presentation
as easy as possible to follow, some material from the previous paper
by Claessen and Svensson ([11]) is presented here as well. This
especially concerns Sect. 2 with the single-node semantics, which
naturally has not changed, and Sect. 3 where the motivation for the
multi-node semantics is still at least partly the same.

Contributions The contribution of the paper is a clear and self
contained presentation of a more accurate distributed (multi-node)
semantics for Erlang. In addition to previous attempts to present a
semantics for distributed Erlang, this presentation includes together
with some other modifications and additions novel semantic rules
to correctly express node disconnects. We also present and infor-
mally argue for desirable properties of the proposed semantics. The
multi-node semantics has already proved to be useful, when used
as the basis for a model checker for Erlang (McErlang).

Summary Sect. 2 contains an introduction to Fredlund’s
single-node semantics. In Sect. 3 we present some motivating ex-
amples, as well as a description of situations where Fredlund’s Er-
lang semantics lacks expressive power. In Sect. 4 we provide an
extension to Fredlund’s semantics, where we add another layer on
top of the existing single-node semantics in order to introduce the
full distributed behavior. In Sect. 5 we specify desirable properties
of the multi-node semantics, and argue why they are fulfilled by the
presented semantics. Some of the design decisions in the extended
semantics are further discussed in Sect. 6, related approaches to the
problem are described in Sect. 7 and finally, we conclude in Sect. 8.

2. Original semantics
In [15], Fredlund gives a complete presentation of a small-step op-
erational semantics for Erlang. Here we will highlight some of the
most important aspects, with enough details to be able to under-
stand the presentation of the extended semantics. Fredlund’s single-
node semantics is presented for a subset of Erlang, that is in short
standard Erlang without: modules, nodes, floats, references, bina-
ries, ports and the catch-expression. Some of the process’ internal
state has also been omitted: there are no process dictionaries, no
group leader or processes groups and name-registration for pro-
cesses is also not included.

All definitions and rules presented in this section are taken from
Fredlund’s presentation of the semantics [15], with the exception
that we in a few cases leave out details not relevant for this article
in order to make the presentation clearer. Fredlund’s semantics is
separated into two parts; one functional part, with evaluation of ex-
pressions and one concurrent part where processes are spawned and
messages are sent and delivered. Fredlund’s single-node semantics
is presented here in roughly the same order as in the original presen-
tation [15], starting with expression evaluation rules then defining
processes and finally stating process evaluation rules.

Definition 1 Erlang expressions are ranged over by e ∈ erlang-
Expr; Erlang values (non-reducible expressions) are ranged over
by v ∈ erlangVal.

The semantics is provided in terms of transition rules on the
format

t
α1
−−−→

1 t′1 . . . t
αn
−−−→

n t′n ϕ1 . . . ϕm

t
α
−−→t′

where each ϕi is a logic side-condition that does not refer to any
transition relation.

send0

pid!v pid!v
−−−−−→v

e
α
−−→

1 e′1send1

e1!e
α
−−→

2 e′1!e2

e
α
−−→e′send2

v!e
α
−−→v!e′

∀i.¬(qmatches q mi)

∃i.((result v mi e′) ∧ ∀j.j < i ⇒ ¬(matches v mj))
receive

receive m end
read(q,v)
−−−−−−−−−→e′

Figure 1. Expression evaluation rules

Definition 2 The expression actions, ranged over by α ∈ erlang-
ExprAction, are:

γ ::= τ computation step
| pid ! v output
| exiting(v) exception
| read(q, v) read from queue
| . . .

Definition 3 The expression transition relation →: erlangExpr
× erlangExprAction × erlangExpr, written e1

α
−−→ e2 when

〈e1, α, e2〉 ∈ →, is the least relation satisfying the transition rules
in [15].

In Fig. 1 we have listed Fredlund’s rules for evaluation of send and
receive at the expression level. The send-rules are fairly straight-
forward, both terms are evaluated until finally a pid!v-action is
generated. The receive-rule is more complicated, and won’t be ex-
plained in detail. The intuition is that q is a prefix to the complete
message queue, and none of the messages in that prefix matches
any of the patterns in m. Also, there exist a pattern in m, such that
it is the first one to match v, and when substituting v according to
that pattern its corresponding expression become e′.

Next we need to formalize the notion of processes, which encap-
sulate Erlang expressions, and the notion of Erlang systems, which
are collections of processes. Erlang processes, ranged over by p ∈
erlangProcess, are either live or dead. The dead processes are in-
troduced to make it easier to reason about the semantics of linked
processes. Processes that are dead still perform some actions; they
will eventually inform linked process about their termination, and
they do respond to received link signals.

Definition 4 An Erlang mailbox is a queue data structure, in theory
unbound, thus it can store any number of messages. Mailboxes are
ranged over by q ∈ erlangQueue, and ǫ denotes the empty queue.

Definition 5 A live Erlang process (erlangLiveProcess ⊂ erlang-
Process), is a quintuple: erlangExpr × erlangPid × erlangQueue
× P(erlangPid) × erlangBool, written 〈e, pid, q, pl, b〉 such that
• e is an Erlang expression,
• pid is the process identifier of the process,
• q is a message queue,
• pl is a set of process identifiers (a set of links with other pro-

cesses),
• b is a boolean determining how process exit notifications are

handled.
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Definition 6 A terminated (dead) Erlang process (erlangDead-
Process ⊂ erlangProcess) is a tuple:
erlangPid ×P (erlangPid × erlangVal), written 〈pid, plm〉, where
• pid is the process identifier of the process,
• plm is a set of tuples, combining process identifiers with a noti-

fication value that should be sent to the corresponding process.

Definition 7 An Erlang system, ranged over by s, is either a sin-
gleton process or a combination of systems s1 and s2, written as
s1 ‖ s2.

Intuitively, the composition of processes into Erlang systems could
be thought of as a set of processes. The ‖ operator is commutative
and associative. When there is no risk for confusion, we omit
the linked processes parameter and the boolean flag from the live
processes, that is they are written as 〈e, pid, q〉. The signals are
items of information transmitted between a sending and a receiving
process. A system action, committed by an Erlang system is either
a silent action, an input action or an output action. We should also
define the system transition relation.

Definition 8 The signals, ranged over by sig ∈ erlangSignal are:

sig ::= message(v) message
| link(pid) linking with process
| unlink(pid) unlinking process
| . . .

Definition 9 The system actions, ranged over by α ∈ erlang-
SysAction are:

α ::= τ silent action
| pid ! sig output action
| pid ? sig input action

Definition 10 The system transition relation
→: erlangSystem × erlangSysAction × erlangSystem, written
s1

α
−−→ s2, is the least relation satisfying the transition rules in

[15]. Some of those rules are listed here in Fig. 2 and Fig. 3.

The rules in Fig. 2 show how processes perform a computation step,
terminates and sends and receives messages. Note that messages
sent to the same process are delivered immediately (output2). Also
note that messages to other processes are transferred to the above
layer by a visible (pid′!message(v)) system action. The rules in
Fig. 3 show how processes communicate and how computations are
interleaved, note that the communication rules also exist in a sym-
metric version where the roles of s1 and s2 are interchanged. The
function pids used in the interleave-rule, simply returns all process
identifiers in the Erlang system. This concludes the introduction
to the original semantics, an example with Fredlund’s single-node
semantics in use is presented in Sect. 3.

3. Motivation
The motivation for creating a multi-node semantics for Erlang
comes from observations made during research projects. There
were some cases when we did not understand the behavior of our
Erlang programs and other cases when we were just curious about
how the run-time system is implemented. When we had figured out
how things actually worked, we realised that the existing single-
node semantics was not expressive enough to describe the prob-
lematic situations. Below we describe two motivating examples,
where we have quite ordinary situations in which the single-node
semantics is not expressive enough.

e τ
−−→e′silent

〈e, pid, q, pl, b〉 τ
−−→〈e′, pid, q, pl, b〉

e
pid′ !v
−−−−−−→e′ pid′ 6= pidoutput1

〈e, pid, q, pl, b〉
pid′ ! message(v)
−−−−−−−−−−−−−−−−→〈e′, pid, q, pl, b〉

e
pid ! v
−−−−−−→e′output2

〈e, pid, q, pl, b〉 τ
−−→〈e, pid, q · v, pl, b〉

input
〈e, pid, q, pl, b〉

pid ?message(v)
−−−−−−−−−−−−−−−→〈e, pid, q · v, pl, b〉

link
〈e, pid, q, pl, b〉

pid ? link(pid′)
−−−−−−−−−−−−−−→〈e, pid, q, pl ∪ {pid′}, b〉

term
〈e, pid, q, pl, b〉 τ

−−→〈pid, {〈P, normal〉|P ∈ pl}〉

Figure 2. Process evaluation rules

s
pid ! sig
−−−−−−−−→

1 s′1 s
pid ? sig
−−−−−−−−→

2 s′2com
s1 ‖ s

τ
−−→

2 s′1 ‖ s′2

s
τ
−−→

1 s′1 pids(s′1) ∩ pids(s2) = ∅
interleave

s1 ‖ s
τ
−−→

2 s′1 ‖ s2

Figure 3. Process communication rules

3.1 Message reordering

procA() ->
PidC = spawn(?NODE2,?MODULE,procC,[]),
PidB = spawn(?NODE1,?MODULE,procB,[PidC]),
PidC ! hello,
PidB ! world.

procB(PidC) ->
receive X -> PidC ! X end.

procC() ->
receive X -> ok end.

Figure 4. Erlang program - Message reordering

In our work with a leader election protocol [5], we saw several
cases where problems arise due to unforseen order of events. Espe-
cially problematic were situations when messages arrived in what
was thought to be an impossible order. To investigate this problem
further, we constructed the Erlang program listed in Fig. 4. This Er-
lang program (process A) first spawns two processes (C and B, and
passes the process identifier of C to B) and then sends a message,
hello, directly to process C. Next the program sends another mes-
sage, world, to process B. When process B receives a message, it
is immediately re-sent to process C. Process C does only one thing,
namely receives one message. Intuitively, process C will receive
the message hello, since it is sent directly from A to C. However, in
the fundamental ideas behind Erlang [1] the only thing said about
message order is ’Message passing between a pair of processes
is assumed to be ordered’. This means that without violating this

45



property world should be able to arrive before hello, since we have
no guarantees for the relative message order when the messages are
sent on different routes. This understanding of possible message or-
derings is further confirmed in the natural language semantics for
Erlang (draft) by Barklund and Virding [8] (Sect. 10.5.4): ’It is as-
sured (through the rules of signals, cf. §10.6.2) that if a process P1

dispatches two messages M1 and M2 to the same process P2, in
that order, then message M1 will never arrive after M2 at the mes-
sage queue of P2. Note that this does not guarantee anything about
in which order messages arrive when a process sends messages to
two different processes. . . ’

The possible executions are depicted in Fig. 5.

CA
1

hello

B
world world

2

3

4?

4?

Figure 5. Message passing

The program in Fig. 4 was executed in three different situations

1. A,B and C where executed in the same run-time system.
2. A,B and C where executed on the same physical machine, but

in separate run-time systems.
3. A,B and C where executed on three different physical machines

connected via a 100 MBit Ethernet network, thus running in
separate run-time systems.

The results were somewhat surprising. If the execution would fol-
low the intuition, hello should always arrive first; if the Erlang ideas
where implemented faithfully we should see both hello and world
arriving first in all three situations. However, in situation (1) hello
always arrive first and in situations (2) and (3) we could see both
hello and world arriving first. The conclusion is that the Erlang run-
time system implementation behaves differently in a local setting
as compared to in a distributed setting (and also differently from
the Erlang specifications, this is further disscussed in Sect. 6). This
partly explain why errors such as those found in the leader election
implementation [5] appear to be common.

Another reason is that Erlang programmers often think of their
system in an event-based way: ”First this process dies, then that
process sends a message, then that message is sent...”. In other
words they have a conceptual model of the many possible orders in
which the events can be generated. The semantics adds additional
possibilities in the form of the possible orders in which the events
actually arrive. This extra complexity may be hard to deal with and
the speed with which messages are delivered allows programmers
to often only think in terms of generated events. Thus, if one does
not think carefully enough, it is easy to be misled and overlook
something.

Message reordering in Fredlund’s semantics
What happens if we try to analyze the program in Fig. 4 with
Fredlund’s single-node semantics? Since the single-node semantics
does not include nodes, it is not too surprising that the program
will behave as in situation (1) above, as we can see in Fig. 6. The
desire to be able to describe also the behavior in situations (2)
and (3) serves as the motivation for extending Fredlund’s single-
node semantics to be able to fully reason about distributed Erlang
systems. This is especially important in case we use the semantics

1. Initial system:
P0 = 〈PidC = spawn(procC, []) . . . , p0, ǫ〉

2. The only scheduler option is to spawn procC. After that, the only
option is to spawn procB since the receive in procC (P2) blocks. This
results in three processes:

P0 = 〈PidC ! hello . . . , p0, ǫ〉
P1 = 〈receive X → PidC ! X end, p1, ǫ〉
P2 = 〈receive X → ok end, p2, ǫ〉

3. Only P0 can make progress, since P1 and P2 are blocked on a
recieve statement:

P0 = 〈PidB ! world, p0, ǫ〉
P1 = 〈receive X → PidC ! X end, p1, ǫ〉
P2 = 〈receive X → ok end, p2, ǫ · hello〉

4. Here we see that there is no way that procC can receive world before
hello. This is because we have a ’match all’ pattern (the single unbound
variable X) in procC and any later arriving message is put last in the
mailbox. Therefore, the next application of the receive-rule (Fig. 1) must
read hello from the mailbox.

Figure 6. Hello World - Single-Node Execution

to produce a model, if certain situations are not present in the
model, errors may be overlooked, and thus giving false confidence.

3.2 Disconnected nodes
Another interesting and potentially dangerous behavior of the Er-
lang run-time system occurs when nodes disconnect from each
other. In the simple situation two nodes (it could be generalized
to many nodes) become disconnected because one of them dies.
This of course means that all processes on the failing node dies,
and processes on the surviving node will be notified of this via the
link-mechanism. This situation is not dangerous, and it could be
simulated in the single-node semantics by grouping processes to-
gether at a meta level and then kill off a whole group of processes.

The potentially dangerous situation is when two processes be-
come disconnected because the link (in the ordinary case, the net-
work connection) between them breaks down. In that case both
of the nodes continue to execute, and both nodes consider the
other node to have failed(!). Thus the processes are informed of
the failure of processes on the other node via the link-mechanism.
Things then become really interesting when the nodes re-connect,
because this happens without any notice to the running processes.
This should be considered harmful since messages can be dropped
silently (if the link mechanism is not used), which breaks the com-
mon assumptions about TCP/IP like communication in Erlang.

From a programmer’s point of view this requires some extra
caution, and as long as this behavior is taken into consideration it
should not cause too much trouble. However if one is careless, and
for example has a system with two processes running on different
nodes (A and B), where A sends a stream of messages to B and
only occasionally gets a reply from B. Then if neither A or B
uses the link mechanism it could be the case that A sends a lot of
messages that B never receives because the nodes are disconnected,
and later the nodes are re-connected before A expects an answer.
This behavior obviously can not be described in the single-node
semantics.

It should be noted that this phenomenon is also acknowledged
in Barklund and Virdings natural language semantics for Erlang [8]
(Sect. 10.6.2): ’It is guaranteed that if a process P1 dispatches two
signals s1 and s2 to the same process P2, in that order, then signal
s1 will never arrive after s2 at P2. It is ensured that whenever
possible, a signal dispatched to a process should eventually arrive
at it. There are situations when it is not reasonable to require that
all signals arrive at their destination, in particular when a signal is
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sent to a process on a different node and communication between
the nodes is temporarily lost.’. In this context a message is a signal.
That is, there are no promises regarding safe delivery (except no
reordering), especially during temporary communication failures.

4. Distributed (Multi-Node) Semantics
In this section Fredlund’s single-node semantics is extended, by
adding a new layer of semantic rules, to a distributed (multi-node)
semantics. By adding another layer on top of the existing semantics
we can deal with all aspects of distribution without making more
than a few marginal changes to the single-node semantics. One
important implication of this is that everything that is defined in
terms of the single-node semantics is still valid in the distributed
semantics under the restriction that the system is local, i.e. running
on the same node.

The distributed layer of the semantics is presented in three steps;
Firstly, we add the possibility to spawn processes on other nodes.
To be able to do this, we have to extend the concept of Erlang
systems to Erlang Run-Time systems, i.e. a single node, and also
Erlang Multi-node systems which are collections of nodes forming
complete distributed systems. We also need to make some minor
changes to the single-node semantics. Secondly, we need new rules
for communication between processes on different nodes (i.e. dif-
ferent run-time systems). These communication rules should have
the properties described in Sect. 3, and thus enable certain message
reordering as well as introduce the possibility to drop messages in
the case of node disconnect. Thirdly, we add the concept of nodes
that die and get restarted. We also need to extend the linking mech-
anism in order for it to work also in the distributed semantics.

4.1 Nodes
Before we can define semantic rules for multi-node Erlang systems
we have to introduce node identifiers. The node identifier could be
any unique identifier. For the sake of simplicity, we can assume
that they are integers. We also need two functions that returns node
identifiers:

Definition 11 Let the function node(erlangPid) return the node
identifier for a given process identifier and let node(erlangSystem)
return the node identifier for an Erlang system.

4.2 Node message queues
The message ordering induced by a single-node semantics is too
deterministic; certain message reorderings are not considered. We
achieve the distributed ordering by introducing one message queue
per node, holding all messages currently ’in transit’ to that node.

Definition 12 An Erlang node message queue, ranged over by
nq ∈ erlangNodeQueue, consists of a finite sequence of triplets
vx = (fromx, tox, sigx): v1 · v2 · . . . · vn, where ǫ is the empty
sequence, (·) is concatenation and ( \ ) is deletion of the first
matching triplet, e.g.
nq = (a2, b1, c1) · (a1, b2, c1) · (a1, b2, c2) · (a1, b2, c1) \ (a1, b2, c1)

= (a2, b1, c1) · (a1, b2, c2) · (a1, b2, c1)

4.3 Run-Time systems
Next, we define the concepts of live and dead run-time systems.

Definition 13 A live Erlang Run-Time system (ERTS), ranged over
by r ∈ erlangRuntimeSystem is a triplet:
erlangSystem × erlangNodeName × erlangNodeQueue, written
[s, node, nq], where:
• s is the Erlang system at node node.

• node is the node identifier (name).
• nq is a node message queue.

Definition 14 A dead Erlang Run-Time system is a tuple: erlang-
NodeName × P(erlangPid), written [[node, npl]], where:
• node is the node identifier.
• npl is a set of process identifiers (consisting of all processes on

the node node).

An example of a dead ERTS is: [[n1, {p1, p5, p13}]] where the node
identifier is n1, and the processes that has executed on n1 are p1,
p5 and p13. Note also that node(p5) = n1.

Definition 15 An Erlang Multi-node system (EMNS) is either a
singleton ERTS or a composition of Erlang Multi-node systems n1

and n2, written as n1 ‖ n2.

Note that here we have chosen to use the same notation (‖) for
composition of Erlang Multi-node systems as for the composition
of Erlang systems in the original semantics. This is to illustrate
that they are similar in behavior. Moreover, there is little risk for
confusion.

4.4 Changes to the single-node semantics
Everything defined in the original semantics works in the extended
semantics, with a few exceptions. We have to change the com-
rule (Fig. 3) slightly, so that it only applies in the situation where
both processes are running on the same node. Further, we need to
do a small (non-functional) modification in order to export extra
information about the sender of a message to the layer we are
adding. This is done by replacing the sending operator (!) with a
tagged version (!from), where from is the sender of the message. This
change is straightforward and is applied to all the send operators in
the single-node semantics. An example of the tagged send operator
can be seen in the new com-rule presented in Fig. 7. The new com-
rule has an added side condition, which restricts its application to
the case when the sender and the receiver are running in the same
Erlang system. Finally, to be able to spawn new processes in the
multi-node setting, we need to refine the existing spawn-rule (we
add a side condition, assuring that it is a local spawn) and add
a distributed spawn-rule. (And similar changes for spawn link.)
The new (spawndist) and modified (spawnlocal) spawn-rules are
presented in Fig. 8. We should note that the distributed spawn rule is
atomic, that is, the new process is created (but does not necessarily
start executing) immediately at the remote node.

In addition to these changes, we also introduce a new way
of writing an erlangDeadProcess (previously written 〈pid, plm〉),
namely: 〈|pid, plm 〉|.

4.5 Transitions
Multi-node systems transitions are labeled by actions. The actions
that can occur at the level of nodes are defined below.

Definition 16 The Multi-node system actions, ranged over by γ ∈
erlangMultiNodeSysAction are:

γ ::= τ silent action
| pid!fromsig output action
| pid?fromsig input action
| die(node) node failure
| disconnect(node1, node2) node disconnection

That is, the actions visible in erlangMultiNodeSysAction are
only the node-to-node communication and node failure. Messages
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s
pid!fromsig
−−−−−−−−→

1 s′1 s
pid?sig
−−−−−−→

2 s′2 node(pid) = node(from)
com

s1 ‖ s
τ
−−→

2 s′1 ‖ s′2

Figure 7. New com-rule

e
spawn(n,f,[v1,...,vm]) {result,pid′}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→e′ pid 6= pid′ node(pid) = n

spawnlocal

〈e, pid, q, pl, b〉 τ
−−→〈e′, pid, q, pl, b〉 ‖ 〈f(v1, . . . , vm), pid′, ǫ, ∅, false〉

e
spawn(n,f,[v1,...,vm]) {result,pid′}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→e′ pid 6= pid′ node(pid) 6= n node(pid′) = n

spawndist

[〈e, pid, q, pl, b〉 ‖ s1, node(pid), nq1] ‖ [s2, n, nq2]
τ
−−→

[〈e′, pid, q, pl, b〉 ‖ s1, node(pid), nq1] ‖ [〈f(v1, . . . , vm), pid′, ǫ, ∅, false〉 ‖ s2, n, nq2]

Figure 8. New spawn-rules (Symmetric spawn link-rules omitted)

sent between processes executing on the same node are not visi-
ble at this level. Note also that at this level the input actions (?)
are tagged with a from. This is not strictly necessary from a func-
tionality point of view, but (as we see in Def. 22) fairness can be
expressed in a simple and elegant way with tagged input actions.

Definition 17 The transistion relation for Erlang Multi-node sys-
tems, →:erlangMultiNodeSystem × erlangMultiNodeSysAction

× erlangMultiNodeSystem, written n
γ
−−−→
1 n2, is the least relation

satisfying the rules in Fig. 9 – Fig. 14.

4.6 Operational output rules
In Fig. 9 the first rule, outputnode is the normal output rule. In this
rule a message is sent to a process executing in a live ERTS, the
message is appended to the node message queue nq. The message
is later delivered to the receiving process by an input rule. The
output2node-rule generates an appropriate reply to a link-request
made to a process on a dead node. A reply is only generated if there
is not already a reply in the node queue of the sender (i.e. a message
waiting for delivery in nq) for that particular process identifier. The
reason to look inside nq for an exit-message is that as long as the
error-message has not reached the linking process, it can not act
upon the error. Therefore it can not know that it should establish
a new link, and thus no new error-message should be constructed.
The last output rule output3node take care of all other messages to a
processes on a dead node, and simply discards them.

4.7 Operational input rules
In Fig. 10 there are two input-rules. The input rule inputnode uses the
function nqMatch to retreive a message from the node message
queue in a non-deterministic fashion. The selected message (sig)
is then delivered to the actual receiving process. The nqMatch
function is defined below. In Fig. 10 there is also the silentnode-
rule, applied for everything except communication happening at
system/process level. As with the output rules, note that messages
sent between processes executing on the same node does not end
up in the node message queue. They are handled by the modified
com-rule (Fig. 7).

Definition 18 nqMatch(erlangNodeQueue, erlangPid, erlang-
Pid), is a function that given an Erlang node message queue, a
sender process id (from) and a receiver process id (to) returns the
first message in the queue sent by from to to, e.g.

nq = (a2, b1, c1) · (a1, b2, c1) · (a1, b2, c2) · (a1, b2, c1)

⇒ nqMatch(nq, a1, b2) = c1

In Fig. 10 we should note that the rule inputnode can be applied
in an arbitrary order for pairs of a sender and a receiver. This
means that messages can (possibly) be reordered. However, at the
same time this rule introduces another problem, namely that a
certain (sender,receiver)-pair is never considered. That means that
the delivery of some messages could potentially be delayed forever.
The problem is that many properties can not be proved for such
a non-fair situation, to deal with this problem we have to state a
fairness rule (in Sect. 4.9).

4.8 Operational node rules
There are four operational node rules, node-failure, node-(re)start,
node-disconnect and node-interleave. The node-failure rule is pre-
sented in Fig. 11. It looks quite complicated, but most of the com-
plexity is due to bookkeeping. When a node fail, and because we
do not have any external handling of links, we have to collect all
links that are currently defined and produce proper exit-messages.
To simplify the collection of links, we use two functions links
and getProcLinks (defined below) to collect the links and a third
function deliverMsgsToNq (also defined below) to deliver the exit-
messages. The node-failure rule also create a dead ERTS with the
same node name as the failing node. The dead node also contains
a list of all processes previously running on the node. One thing to
note here is that there can be at most one link between a pair of pro-
cesses, and therefore we can safely add all link messages directly
to the node queues without worrying about message order. Another
thing that we should observe is that links are collected both from
the individual processes and the node message queue nq. The intu-
ition behind this is that as soon as a process on another node has
sent a link request, the sending process believes that it has a work-
ing link to the linked process. The linking mechanism is further
discussed in Sect. 6.

Definition 19 The function links(erlangNodeQueue) traverses an
Erlang node message queue and collects all pending link-request
from the node queue. The function getProcLinks(erlangPid) re-
turn the pl-list (i.e. the list of linked nodes) for a process, given
the process identifier of that process. Finally, the function deliv-
erMsgsToNq(EMNS,Messages) deliver all messages to the cor-
rect node queue. E.g. let n = [s11, n1, nq1] ‖ [s21, n2, nq2] and
p1, p3 ∈ pids(s11) and p7 ∈ pids(s21), then:
deliverMsgsToNq(n, {(p7, p1, sig1), (p3, p7, sig2)}) =

[s11, n1, nq1 · (p7, p1, sig1)] ‖ [s21, n2, nq2 · (p3, p7, sig2)]

In Fig. 12 the node-(re)start rule is presented. The interesting thing
to notice here is that we create an erlangDeadProcess for each
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s
pid !fromsig
−−−−−−−−−→

1 s′1 node(from) 6= node(pid)outputnode

[s1, node(from), nq1] ‖ [s2, node(pid), nq2]
pid !fromsig
−−−−−−−−−→

[s′1, node(from), nq1] ‖ [s2, node(pid), nq2 · (from,pid,sig)]

s
pid !fromlink(from)
−−−−−−−−−−−−−−−→

1 s′1 (pid,from,exited(pid,noconnection)) /∈ nq
output2node

[s1, node(from), nq] ‖ [[node(pid), npl]]
from !

pid
exited(pid,noconnection)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

[s′1, node(from), nq · (pid,from,exited(pid,noconnection))] ‖ [[node(pid), npl]]

s
pid !fromsig
−−−−−−−−−→

1 s′1

sig 6= link(from) ∨

(pid,from,exited(pid,noconnection)) ∈ nq1output3node
[s1, node(from), nq1] ‖ [[node(pid), npl]] τ

−−−→ [s′1, node(from), nq1] ‖ [[node(pid), npl]]

Figure 9. Inter-node communication – Output rules

s
pid ?sig
−−−−−−−→s′ nqMatch(nq,from,pid) = siginputnode

[s, node, nq]
pid ?fromsig
−−−−−−−−−→[s′, node, nq \ (from,pid,sig)]

s
τ
−−→ s′silentnode

[s, node, nq]
τ
−−→[s′, node, nq]

Figure 10. Inter-node communication – Input-rules

links = {(pid, pid′) | pid′ ∈ getProcLinks(pid), pid ∈ pids(s)} ∪ links(nq)

linkMsgs = {(from, to, exited(from,noconnection) | (from,to) ∈ links}
n′ = deliverMsgsToNq(n,linkMsgs)

node-failure
n ‖ [s, node, nq]

die(node)
−−−−−−−−−→ n′ ‖ [[node, pids(s)]]

Figure 11. Node-failure rule

node-start
[[node, npl]] τ

−−→[init() ‖ {〈|pid, {} 〉| | pid ∈ npl}, node, ǫ]

Figure 12. Start node rule

msg1←2 = {(from, to, sig) | sig ∈ nqMatchAll(nq, to, from), to ∈ pids(s1), from ∈ pids(s2)}

msg2←1 = {(from, to, sig) | sig ∈ nqMatchAll(nq, to, from), to ∈ pids(s2), from ∈ pids(s1)}

links1 = filterLinks({(pid1, pid2) | pid2 ∈ getProcLinks(pid1), pid1 ∈ pids(s1)} ∪ links(nq1), n1, n2)

links2 = filterLinks({(pid1, pid2) | pid2 ∈ getProcLinks(pid1), pid1 ∈ pids(s2)} ∪ links(nq2), n2, n1)

fail1 = {(from,to,exited(from,noconnection)) | (from, to) ∈ links1}

fail2 = {(from,to,exited(from,noconnection)) | (to, from) ∈ links2}
node-disc

[s1, n1, nq1] ‖ [s2, n2, nq2]
disconnect(n1,n2)
−−−−−−−−−−−−−−−−→[s1, n1, (nq1 \ msg1←2) · fail2] ‖ [s2, n2, (nq2 \ msg2←1) · fail1]

Figure 13. Node-disconnect rule

pid that has previously been running on the node (i.e. the process
identifiers in npl). The reason for this is to simplify link handling. If
all previous processes exists on the node, future link-requests sent
to these processes get the correct respose without having to create
any further semantic rules. The function init() is an initialization

process which is started on a new node. What the init()-process
does is not further specified in the semantics, but it could be thought
of as any reasonable, and changeable from the outside, starting
action for an Erlang node. For example starting a certain set of
processes, or initiate some other chain of events.
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n
γ
−−→

1 n′1interleavenode

n1 ‖ n
γ
−−→

2 n′1 ‖ n2

Figure 14. Node interleaving (symmetrical rule omitted)

The third node rule, node-disconnect, is presented in Fig. 13.
The rule handles the situation when the communication channel
between two nodes break down. The result of this is that all mes-
sages from/to the disconnected nodes that are currently in the node
queue are lost, and that a set of link messages (exit-messages) are
created and sent. The rule uses two functions nqMatchAll and fil-
terLinks (defined below) to collect messages that are lost and links
that should be converted to a exit-messages. The rule discards mes-
sages and adds link notifications to the node queues of the discon-
nected nodes. Some things should be noted, first, the order of mes-
sages between a pair of processes is not affected by this rule. Either
the messages are delivered in order or not at all. Second, to drop
all messages in transit between the disconnected nodes is a design
choice, we could just as well drop only an arbitrary set of messages.
This is further discussed in Sect. 6. Finally we note that there is no
node-(re)connect-rule, since the reconnection of nodes is transpar-
ent at the semantic level.

Definition 20 The function nqMatchAll(erlangNodeQueue, To,
From) is a function that given an Erlang node message queue,
a sender process id (from) and a receiver process id (to) re-
turns all messages in the queue sent by from to to. The function
filterLinks(P(erlangPid × erlangPid), erlangNodeName, er-
langNodeName) is a function that filters a set of process identifier
pairs with respect to the node the processes are running at. E.g. let
node(p1x) = n1, node(p2x) = n2 and node(p3x) = n3 then:
filterLinks({(p11, p21), (p12, p34), (p27, p12)}, n1, n2) =

{(p11, p21)}

We should also take a closer look at what happens with the node-to-
node communication when the receiving process terminates. When
a process terminates, its message queue q disappears. That is all
messages which have already been delivered to the process are
deleted. If the rule inputnode is applied for a terminated process, i.e.
if we deliver a message to a terminated process, this is handled by
the rules in Table 3.17 in Fredlunds semantics [15]. That is, the
underlying semantics properly destroy messages and reply to link-
requests.

4.9 Fairness
As we noted above, the input-rule, i.e. the inputnode rule in Fig. 10,
can be applied in such a way that some messages are never deliv-
ered. That is the rules themselves does not ensure that messages are
delivered in a fair manner. This is generally a bad thing, since many
properties can not be proved in a non-fair system. Therefore we
need to define a fairness-rule which will exclude certain unwanted
behavior of the system. Fairness is defined in terms of permissable
execution sequences.

Definition 21 An execution sequence is a sequence of Erlang
Multi-node Systems ni, together with corresponding Erlang Multi-
node system actions γi written:

n
γ0
−−−→

0 n
γ1
−−−→

1 n
γ2
−−−→

2 . . . .

Definition 22 [Fairness for inter-node communication]
It should hold for all execution sequences, (~n,~γ):

∀i.



n
pid!fromsig
−−−−−−−−→

i ni+1 ⇒

∃j > i.

„

n
pid?fromsig
−−−−−−−−→

j nj+1 ∨

n
die(node(pid))
−−−−−−−−−−−→

j nj+1 ∨

n
disconnect(node(pid),node(from))
−−−−−−−−−−−−−−−−−−−−−−−−−−→

j nj+1 ∨

n
disconnect(node(from),node(pid))
−−−−−−−−−−−−−−−−−−−−−−−−−−→

j nj+1

«ff

That is, Definition 22 state that every sent message is eventually
delivered to the recieving process, or the node where the receiving
process is executed dies, or a node disconnection involving the
sending and the receiving node occurs.

4.10 Message reordering
The motivation for extending Fredlund’s single-node semantics
was partly to capture the distributed behavior where messages were
reordered. Therefore, we repeat the ’hello world’ example from
Sect. 3, but now we execute the program from Fig. 4 in the extended
semantics. The example is presented in Fig. 15.

4.11 Node disconnection
Another part of the motivation for the multi-node semantics was to
capture the behavior where nodes disconnect. Therefore, we con-
clude the presentation of the extended semantics with an exam-
ple with node disconnection. The example is presented in Fig. 17,
where we execute the program in Fig. 16 in the multi-node seman-
tics. The program consists of two processes where the first process
sends a the number sequence [1, 2, 3] to the other. The effect of the
node disconnect is that the second process can receive the sequence
[1, 3].

5. Properties of the Multi-Node Semantics
In the previous section we have defined a distributed semantics for a
subset of Erlang. The limitations are the same as Fredlund have in
the single node semantics [15]; in short standard Erlang without:
modules, floats, references, binaries, ports, the catch-expression
and some internal process state information such as process dictio-
naries. In the design of the semantics we have had several informal
properties which we have intended for the distributed semantics. In
this section we argue for some of them and describe why they are
desirable and why they actually hold for the distributed semantics.

5.1 Extension
The first property we want is that the distributed semantics is a
true extension of the single-node semantics. That is if we take a
single-node system and execute it in the multi-node semantics (this
is possible with only minor modifications of the system) it should
work exactly the same. In order to express ’exactly the same’ and
’minor modifications’ in a strict way we have to define the mkDist
function as well as an execution sequence.
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1. Initial system:
N0 = [〈PidC = spawn(nodeC,procC, []) . . . , p0, ǫ〉, n0, ǫ]

2. The only scheduler option is to spawn procC. After that, the only
option is to spawn procB since the receive in procC blocks. This
results in three processes:

N0 = [〈PidC ! hello . . . , p01, ǫ〉, n0, ǫ]
N1 = [〈receive X → PidC ! X end, p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉, n2, ǫ]

3. Only N0 can make progress, since N1 and N2 are blocked on a
recieve statement:

N0 = [〈PidB ! world, p01, ǫ〉, n0, ǫ]
N1 = [〈receive X → PidC ! X end, p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉, n2, ǫ · (p01, p21, hello)]

4. Now we have two options, either apply the inputnode on N2 or let
N0 send its second message. Since the purpose is to show message
re-ordering we let N0 proceed:

N0 = [〈|p01, ǫ 〉|, n0, ǫ]
N1 = [〈receive X → PidC ! X end, p11, ǫ〉,

n1, ǫ · (p01, p11, world)]
N2 = [〈receive X → ok end, p21, ǫ〉,

n2, ǫ · (p01, p21, hello)]

5. Again we have two options, we can apply inputnode to either N1 or N2,
to illustrate our point, we choose N1:

N1 = [〈receive X → PidC ! X end, p11, ǫ · world〉, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉, n2, ǫ · (p01, p21, hello)]

6. Now we continue to ignore N2 and let p11 read its message and send
it to p21:

N1 = [〈|p11, ǫ 〉|, n1, ǫ]
N2 = [〈receive X → ok end, p21, ǫ〉,

n2, ǫ · (p01, p21, hello) · (p11, p21, world)]

7. Finally we have arrived in the wanted situation, we can apply inputnode
to N2, and by its construction it is perfectly ok to deliver the world
message:

N2 = [〈receive X → ok end, p21, ǫ · world〉,
n2, ǫ · (p01, p21, hello)]

8. Now world is received before hello.

Figure 15. Hello World – Multi-Node Execution

init() ->
PidB = spawn(?NODE2,?MODULE,procB,[]),
PidA = spawn(?NODE1,?MODULE,procA,[PidB]).

procA(PidB) ->
PidB ! 1,
PidB ! 2,
PidB ! 3.

procB() ->
receive X -> ok end,
receive Y -> ok end,
receive Z -> ok end.

Figure 16. Simple One-Two-Three counting program

Definition 23 The function mkDist(erlangNodeId,erlangSystem)
takes a single-node Erlang system and prepare it for execution
in the multi-node semantics (on the given node). The necessary
change is to replace each spawn(f, [v1, . . . , vm]) with the dis-
tributed variant spawn(n, f, [v1, . . . , vm]), where n is the given
node.

Definition 24 An execution sequence for an Erlang is defined to be
the sequence of system actions (see Def. 9) performed by the ex-

1. Initial system:
N0 = [〈PidB = spawn(n2,procB, []) . . . , p0, ǫ〉, n0, ǫ]

2. The only scheduler option is to spawn procB. After that, the only
option is to spawn procA since the receive in procB blocks. This
results in two processes (the first one is terminated):

N1 = [〈PidA ! 1 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ〉, n2, ǫ]

3. Again there is only one option, to let PidA send 1:
N1 = [〈PidA ! 2 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ〉, n2, ǫ · (p11, p21, 1)]

4. To illustrate our point, we now let N2 execute, the inputnode- rule is
applied:

N1 = [〈PidA ! 2 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ]

5. Now we proceed by letting N1 execute and send another number:
N1 = [〈PidA ! 3 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ · (p11, p21, 2)]

6. Now assume that the nodes disconnect, and thus we apply the
node-disconnect rule, note that the message already delivered to p21 is
not affected:

N1 = [〈PidA ! 3 . . . , p11, ǫ〉, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ]

7. Now the nodes are re-connected, and we can proceed by letting N1

execute and send yet another number:
N1 = [〈|p11, ǫ 〉|, n1, ǫ]
N2 = [〈receive X → ok end . . . , p21, ǫ · 1〉, n2, ǫ · (p11, p21, 3)]

8. Now we see that p21 will receive the sequence [1,3], which is not
possible in the single-node semantics.

Figure 17. One-Two-Three – Multi-Node Execution

ecuted system. Since the scheduler is non-deterministic an Erlang
system will have a (large) set of possible execution sequences.

Prop 1. A single-node Erlang system (s ∈ erlangSystem) which is
prepared for execution in the multi-node semantics by the mkDist
function has exactly the same set of possible execution sequences
as the system s executed in the single-node semantics, as long as
the node is not allowed to fail.

This is true because the only semantic rules that are invoked
are those in the single node semantics (together with the non-
interfering silentnode rule). This we can be sure of because there
is only one way to ’escape to’ the multi-node semantics, namely by
communication not caught by the com-rule (Fig. 7). And because
we have the side condition in the spawnlocal-rule that the node is the
same for the spawned processes, all communication is caught by
the com-rule. Note that we have to disallow the node failure, or the
distributed version of the system would have a larger set of possible
execution sequences. Node disconnect is not a problem since we
have only one node!

5.2 Message Reordering and Node Disconnect
The main motivation for the semantics for distributed Erlang was
to be able to express message reordering and node disconnect in
the semantics, it is therefore desirable that this is indeed possible.

Prop 2. In a distributed system, a message sent from a process (A)
via a second process (B) to a third process (C), can arrive before
a message sent directly from A to C at some earlier point in time.
Messages between two processes at different nodes can also be lost
due to node disconnection.
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In the examples in Fig. 15 and Fig. 17 we demonstrate that mes-
sages can arrive in the desired way and that node disconnection is
indeed possible. By the design of the function nqMatch the oppo-
site, namely that messages between a pair of processes are always
ordered, is also ensured.

5.3 Expressiveness
It is also important that the extended semantics is complete in terms
of expressiveness. Every correct distributed system must be able to
execute in the semantics, and it must not get stuck because there is
something not expressible in the semantics.

Definition 25 Progress for a process is equivalent to applying one
of the evaluation rules for processes. Further an Erlang system can
make progress if and only if any of its processes can make progress.

Prop 3. An Erlang (Multi-node) system which is not in a dead-
locked situation and that does have at least one live process should
be able to make progress according to the semantic rules.

This is a property that should hold for the underlying semantics,
even though it is not proved by Fredlund in [15]. We would like to
prove something similar for ERTS/EMNS, but here we have the ex-
tra complications of nodes. Because of the rules node-failure,node-
start and node-disconnect an EMNS can always do something
namely that a node fail or restart or that two nodes disconnect.

5.4 Finite systems stays finite
Another concern is that the extension of the semantics may intro-
duce unwanted overhead in terms of resources. Since the seman-
tics should model the behavior of the run-time system it is impor-
tant that a system that executes with finite bounds on the message
queues does so also in the semantics.

Prop 4. A finite system (that is with finite bounds of the length of
the message queues) in the single-node semantics is still finite in
the multi-node semantics.

The main argument for why this holds is that there is a one-to-one
mapping of messages. That is there is no place in the multi-node
semantics where a message is duplicated, therefore the number of
messages stays the same. Since we also have the fairness rule all
messages should eventually be delivered, and there is no inherent
way that systems become infinite in the distributed semantics.

5.5 A word of caution
After we have argued above that the desired properties of the dis-
tributed semantics holds it is important to note a few artifacts of
the functional differences between a single-node and a multi-node
system. Because of the functional differences, a non-deadlocking
single-node system might very well dead-lock if run in a distributed
setting. For example imagine a system which depends on the mes-
sage ordering implied by the single-node semantics2, such a system
could easily dead-lock if we distribute it over several run-time sys-
tems. In the same way, also a finite single-node system might very
well become infinite if it is run in a distributed environment.

6. Discussion
The fundamental characteristics of Erlang are described by Arm-
strong in his thesis [1]. Armstrong describes how the concept of

2 One could indeed say that such a system is simply containing a bug,
since the enforcment of such a static message order is nowhere to be found
in the Erlang specifications. Nevertheless, since the de facto standard, the
OTP Erlang run-time system implementation, actually behave this way such
programs are going to be written.

concurrency oriented programming led to the development of Er-
lang. The original thoughts on distribution are further described by
Wikström [23]. In a concurrency oriented programming language
the following is specified for message passing: ”Message passing
between a pair of processes is assumed to be ordered.”

This is indeed true for the semantics presented by Fredlund [15],
but due to the construction of the com-rule (in Fig. 3), even stronger
properties hold in the single-node semantics. In Fredlund’s single-
node semantics the delivery of a message to another process is
instantaneous, meaning that all messages are delivered in exactly
the order they are sent. Because of how the standard (OTP) Erlang
run-time system is implemented, this happens to be true also for
a real Erlang system where all processes are running on the same
node. However, it is not true in general for a concurrency oriented
programming language, and specifically not in a distributed setting
with several different Erlang nodes.

There is an intricate choice here, on one side we have the de
facto standard, the OTP implementation of the Erlang run-time
system where local communication is instantaneous. On the other
side we have the different Erlang specifications, where no support
for such instantaneous communication can be found. Our original
concern was to produce a semantics to be used for model checking,
and therefore the presentation is biased by this. Since Fredlund’s
single-node semantics faithfully describes what actually happens
inside the standard run-time system, we argue that for efficient
model checking of Erlang systems (to be run on in the standard
run-time system), the underlying semantics should be kept as it is.
Fredlund’s intra-node message passing is not consistent with the
Erlang specifications, but using a special version of local message
passing makes certain (local) systems easier to reason about.

Nevertheless, it is somewhat unconventional to produce a se-
mantics for a particular implementation of a language, and thus
one could argue that we should instead present the more general
semantics. The alternative then is to only have the kind of mes-
sage passing rules that we have in the node-to-node communica-
tion. Such a modification would be rather straightforward to do.
The consequence of this is an overall simpler (and more general)
semantics, which is less restrictive for a local system. However, this
is problematic in the model checking context, since it results in a
bigger state space. Another problem is the introduction of false neg-
atives, because a local system might appear to fail due to an order
of events not possible in reality (in the standard Erlang implementa-
tion). Such a general semantics would however be useful in case of
a future Erlang implementation that adheres more closely to the Er-
lang specifications. (Such an implementation would of course also
require changes to model checkers using the semantics presented
in this paper.)

This picture may also be further complicated in the future by
the introduction of multi-core systems and the SMP-version of the
Erlang run-time system.

In the development of the multi-node semantics, we have also
made several other distinctive choices. One particular choice is seen
in the node-disconnect rule, where all messages currently in transit
between two nodes are dropped. We could just as well have dropped
an arbitrary sequence of messages in the node queue. However,
dropping all messages is certainly easier and it makes the fairness
rule less complicated. This is also an example of where a simpler
rule offer the same expressivity as a more complicated one. Every
sequence of messages in the node queue could indeed be dropped,
it is just a matter of applying the rule at the right time. Another
design choice we made was to introduce one message queue for
’messages in transit’ per node. There is no functional motivation
behind this choice, we could just as well have settled for one single
global message queue, but in the end we thought it to be more
aesthetic to have one queue per node.
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Quite many of the rules presented in Section 4 handle the link-
messages. The link mechanism is a very useful construction and
many distributed implementations rely on this functionality. It is
important to observe that we must treat links differently from or-
dinary messages in order to faithfully describe Erlang programs.
For example, take a look at the Erlang program in Fig. 18. If we
run procA it should be possible to sometimes trap the exit mes-
sage (i.e. get an {’EXIT’,pid,kill} from procB and sometimes
just get a {’EXIT’,pid,noproc} back, indicating that process B
had already terminated. This behavior can be observed by running
the program repeatedly. Although the result is heavily dependent
on machine load and network load, with 1000 runs, almost every-
time both behaviors could be observed. This means that it would be
incorrect to treat the link-message as ordinary message, since the
message order between a pair of processes is respected and then an
order of events such as getting {’EXIT’,pid,kill} from process
B would be impossible.

In Fredlund’s single-node semantics, (and here seen in Fig. 2)
a separation is made between link-messages and other messages,
which ensures the correct behavior. However, when dead nodes are
involved, some special care is needed, which results in special link-
rules as seen in Fig. 9.

Another part of the linking mechanism are the somewhat
complicated node-failure and node-disconnect rules (Fig. 11 and
Fig. 13), where we have to collect link messages from the node
message queue. This is because we are modelling the link mech-
anism in a different way from the actual Erlang implementation.
This actually an important observation in a more general perspec-
tive. The goal with the semantics is to be able to express all the
possible behavior of the Erlang implementation, and not to de-
scribe how the implementation actually works. In the Erlang im-
plementation, the run-time system keeps track of links via a timeout
construction. In the semantics we instead do the book keeping (so
to say) at the other end. Therefore, we have to take extra care when
node fails since messages in nq are otherwise lost.

The node-disconnect rule looks rather horrible from a program-
mers point of view, at any time, all messages between a pair of
nodes may be lost. However this is not as disastrous as one might
think, as long as one is aware that this might happen. This is be-
cause the link-mechanism works in the node disconnect case, and
as long as communication is restricted to monitored receivers there
is no immediate danger.

Finally we should discuss one limitation of the distributed se-
mantics, namely that monitors are not a part of the semantics. This
is a limitation because monitors are widely used, and the correct-
ness of many distributed Erlang systems rely on monitors. One is
tempted to belive that it is possible to implement monitors in terms
of links. This is however only partly true, since monitors would
have to be implemented using a named and dedicated process for
each node. This means that in order to get a correct behavior we
have to ensure that no one is for example killing the monitor pro-
cess. Therefore, it is not obvious how to implement monitors in
terms of links and it seems that we have to make some non-trivial
assumptions.

7. Related Work
The semantics for Erlang is informally described in [2]. Thereafter,
a first, not completed, attempt to formally specify the semantics of
Erlang was made by Petterson [20]. Petterson, inspired by similar
work with Standard ML and Relational ML, used Natural Seman-
tics but did not finish the work. Following this, the Formal Design
Techniques group at the Swedish Institute of Computing Science
(SICS) developed a number of formal (operational) semantics for
different subsets of Erlang, for example [12] and [13]. These at-
tempts, compared to the semantics presented by Fredlund in [15],

procA() ->
PidB = spawn(?ANOTHERNODE,?MODULE,procB,[]),
PidB ! a,
process_flag(trap_exit,true),
link(PidB),
...

procB() ->
receive a ->
exit(kill)
end.

Figure 18. Erlang program - Linking

are not as direct and lacks the clear separation between the func-
tional and the concurrent part of the semantics. A completely differ-
ent approach is taken by Huch in [19]. Huch present a semantics for
(a smaller subset) of Erlang, which is more direct and relies heavily
on contextual information. All these approaches except Petterson’s
consider systems which are not fully distributed since they do not
deal with nodes.

Both [12] and [19] make use of subsets of Erlang referred to as
core fragments of Erlang. These references should not be confused
with the Core Erlang project [10], which defines a complete (with
respect to representing all possible Erlang programs) core fragment
of Erlang. Core Erlang is in the Erlang compiler used as the inter-
mediate format where optimizations and transformations are ap-
plied, therefore its use is mostly syntactic. For Core Erlang the se-
mantics is given in a structured but also informal way, and does not
directly speak about nodes or message delivery.

The distributed semantics for Erlang presented in [11] has been
used in a model checker for Erlang, McErlang [16]. Implementing
a model checker is the ultimate test for a semantics, and several
limitations were indeed found, which motivated the further work
on a distributed semantics for Erlang.

8. Conclusions and Future Work
In 2005, we proposed an extension of the Fredlund’s single-node
semantics into a distributed (multi-node) semantics for Erlang [11].
We augmented the single-node semantics with a distributed layer,
and were able to successfully model multi-node programs in the
extended semantics. Together with the distributed semantics there
was also a warning to the community of potential pit-falls with
testing and verification using a single-node semantics.

Later the multi-node semantics was used in the implementa-
tion of a model checker for Erlang (McErlang, [16]). The model
checker implementation revealed some inconsistencies as well as a
major shortcoming in the multi-node semantics. The main problem
was the Erlang behavior in the case of node disconnect. Two Erlang
nodes can become disconnected from each other if the link between
them fails, when this happens both involved nodes regard the other
node as dead. This does have some interesting consequences when
the nodes later re-connect. The correct behavior was later imple-
mented in the model checker, however this behavior could not be
modeled in the multi-node semantics we had proposed.

In this new presentation of a distributed semantics for Erlang,
we have restructured some parts of the distributed layer. Further,
we have added the node disconnect functionality, we have corrected
errors in the original presentation and we have simplified and clar-
ified the presentation in many aspects. The result is a more accu-
rate and more expressive multi-node semantics for Erlang, with a
clearer presentation and less complicated semantic rules. We have
also added a discussion of the desired properties of the multi-node
semantics.
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Future Work The introduction of multi-core computer sys-
tems and the development of a SMP-version of the Erlang run-time
is already a fact. And it will be interesting to see if there are any new
semantic implications because of this. There is also further work to
be done with model checking Erlang in the distributed setting.
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