Implementing an LTL-to-Biichi Translator in Erlang

a ProTest Experience Report

Hans Svensson

Department of Applied IT, Chalmers University of Technology, Gothenburg, Sweden

hanssv@chalmers.se

Abstract

In order to provide a nice user experience in McErlang, a model
checker for Erlang programs, we needed an LTL-to-Biichi transla-
tor. This paper reports on our experiences implementing a trans-
lator in Erlang using well known algorithms described in litera-
ture. We followed a property driven development schema, where
QuickCheck properties were formulated before writing the imple-
mentation. We successfully implement an LTL-to-Biichi transla-
tor, where the end result performs on par (or better) than two well
known reference implementations.

Categories and Subject Descriptors D.2.5 [Testing and Debug-
ging]: Testing tools

General Terms Algorithms, Verification

Keywords LTL-to-Biichi translator, QuickCheck, property driven
development

1. Introduction

Correctness of concurrent or distributed software is a well known,
and immensely complicated problem. It is also a fact that during
the last couple of years, the problem has become more important
due to the introduction of multi-core processors. This has led to an
increased interest in the problem, and a variety of good work has
made the problem a lot more tractable.

Model checking is one of the most successful and mostly used
techniques to prove correctness of a (hardware or software) system.
The standard model checking problem consists of a model system
expressed as a finite state machine (FSM), and a specification given
by a temporal logic formula. Model checking for temporal logic
formulas was pioneered by Clarke et al. (1986) and as well by
Queille and Sifakis (1982). The main obstacle in model checking is
the famous state space explosion problem, due to a combinatorial
blow-up of the state space (the size of the FSM). This combinatorial
blow up is very problematic when dealing with concurrent and fault
tolerant systems (meaning that most Erlang software falls into this
category). However, there are some different techniques that try to
deal with the problem such as:

e Symbolic model checking, where the state space is instead
represented symbolically in terms of logic formulas.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Erlang’09, September 5, 2009, Edinburgh, Scotland, UK.
Copyright © 2009 ACM 978-1-60558-507-9/09/09. . . $10.00

e Partial order reduction techniques, where equivalent paths
through the FSM are grouped together and reduced to a sin-
gle path.

e Abstraction techniques, where the system is simplified by an
abstraction function, thus reducing the size of the FSM.

One tool that aims to simplify the verification of correctness
for distributed Erlang programs is McErlang, a model checker for
Erlang. McErlang was first presented in (Fredlund and Svensson
2007), and has been used in a couple of successful projects (Fred-
lund and Sanchez Penas 2007; Earle et al. 2008). Since 2008 McEr-
lang is an important part of the ProTest project and the release of
the first public open source version in March 2009 is a result of
this.

McErlang (Fredlund and Svensson 2007) is a fairly standard ex-
plicit state model checker, although through plugins more advanced
concepts such as state abstraction can easily be used. The interest-
ing part of McErlang is that it is a model checker for Erlang written
in Erlang. As a result of this, side-effect free parts of a system can
be evaluated as is, without tedious translation. This means that one
can focus on the complicated parts such as distribution and fault
tolerance, and the result is that McErlang supports a large subset of
Erlang. McErlang implements the full distributed Erlang semantics
(Svensson and Fredlund 2007) and all the important OTP compo-
nents (gen_server, gen fsm, ...).

The first (non-public) versions of McErlang encoded correct-
ness properties (specifications) as simple automata programmed
directly in Erlang. Having very little support for higher level con-
structs, this meant that writing properties was both tedious and error
prone. For more complex properties (such as fairness properties)
McErlang also supported Biichi automata, but they still needed be
hand written.

To make McErlang more accessible before its first public re-
lease it was decided to simplify the specifications by adding the
possibility of using LTL properties. This is fairly straightforward,
since LTL expressions can be automatically translated into Biichi
automata (Wolper et al. 1983). However, for model checking to be
efficient it is important to produce as small an automaton as possi-
ble, thus a good translator was needed. The obvious solution was
to use an existing implementation. However, no Erlang implemen-
tation could be found and although it is a simple task to wrap an
existing Java implementation (such as Giannakopoulou and Lerda
(2002)) it did not appeal to us aesthetically having advocated the
all-in-Erlang aspect of McErlang. From a distribution point of view
it is also simpler to have a native implementation, we avoid the li-
censing aspect as well as the problem of missing external compo-
nents, while being in control of new releases and bug fixes. In the
end, this made us decide to implement an LTL formula to Biichi
automata translator ourselves.

This paper describes the implementation of an LTL to Biichi
automata translator in Erlang. The implementation includes some
state-of-the-art technologies and it performs quite well as seen in
Sect. 5. The paper focuses quite a lot on the verification of the
correctness of the implementation, and could be seen as an expe-
rience report on property driven development and property based
testing. We used Erlang QuickCheck (Hughes 2007) to formulate
properties and run test cases randomly generated from the prop-
erties. Property driven development is the QuickCheck dual of
test driven development (TDD) (Beck 2003), where the test cases
drive the implementation forward. In practice it consists of three
stages; (1) tests are written that do not pass for the implementa-
tion, (2) the implementation is extended so the tests pass, and (3)
the code is refactored to produce the end result. The development
process is iterative, and it worked well for our implementation. Us-
ing QuickCheck makes phase (2) even more productive. Whenever
a test fail, QuickCheck provide a minimal counter example, and in
many cases the counter example shorten the time to diagnose an
error. In our work it was very useful to get small LTL formulas for
which the implementation produces an incorrect automaton.
Paper organization — The paper is organized as follows; in Sect.
2 we introduce the theoretical background as well as the problem
of testing an LTL to Biichi automata translation. Sect. 3 describes
the properties that were defined during the implementation, and
how various model checking concepts are mapped to QuickCheck.
The implementation is described in Sect. 4, the implementation is
evaluated and compared to other implementations in Sect. 5 and the
paper is summarized in Sect. 6.

2. Theoretical background

In this section, we provide some theoretical background to the
concepts discussed in later sections.

2.1 Linear temporal logic - LTL

To write specifications for reactive systems, we need to be able to
precisely describe how the system behaves for (possibly) infinite
executions. Temporal logic (Pnueli 1977) has become a de facto
standard formalism for this kind of specifications, and there are
quite a few flavors of temporal logic, here we focus on linear tem-
poral logic. LTL is an extension of propositional logic. If AP is
a (non-empty and finite) set of atomic propositions, then the LTL

formulas are:
— Allp € AP are LTL formulas.

— If p and v are LTL formulas, then —p, (¢ A %),
X ¢, (¢ U) are also LTL formulas.

The standard semantics for an LTL formula ¢ is defined in terms
of an infinite sequence (§) over 247 Let £ be the infinite sub-
sequence of £ that begins at the ith position of £ (¢ > 0). Now the
relation (|=) is defined as:

— Forp e AP, ¢ Epiffp € &. (& is the first element of &).
& E e iff ~(€ |), usually written & [~ ¢.
EEXpiffe! o _ _
EE(@UY)iff 3i>0. &8 EvandV0<j<i & E e
If £ | ¢, then & is called a model of . The set of all models
{€ € (247) | ¢ k= @} is called the language of @ and is denoted
by L.

2.2 Biichi automaton

Biichi automata were introduced by Biichi (1960). A Biichi au-
tomaton accepts infinite input sequences if and only if there exists
a path that visits an accepting state infinitely often. A Biichi au-
tomaton is a tuple BA = (2, Q, A, Q°, F) where:

— X s the alphabet,

@ is the finite set of states,

- ACQXxXxQ isthe transition relation,
Q° C Q is the set of initial states, and

- F CQ isthe set of accepting states.

An execution of BA for an infinite sequence £ = (zo,z1,...) €
3% is the infinite sequence of states o = {(qo, ¢1, . ..) € Q* where
go € Q% and forall i > 0, (qi,pi,qis1) € A. Letinf(c) C Q
denote the states that occur infinitely often in an execution o, then
o is an accepting execution if and only if (inf(o) N F) # 0.

We say that the automaton accepts § € X% exactly when there
exists an accepting execution of BA on &. If there is no accepting
execution, then BA is said to reject €. The accepted language of an
automaton BA is the set of sequences £ accepted by the automaton
BA, it is denoted by L.

There is a close connection between languages induced by an
LTL formula and the accepted language of a Biichi automaton, in
fact any LTL formula can be represented as a Biichi automaton.
This connection was explicitly shown by Wolper et al. (1983) and
this property was used to develop the automata-theoretic approach
to LTL model checking (Vardi and Wolper 1986).

2.3 LTL model checking

The LTL model checking problem answers the question of whether
a specification (in the form of an LTL formula) is satisfied in a
finite model of a system. The system is often (translated into) a
state-transition graph where each state is augmented with exactly
the atomic propositions that hold in the state. Such a transition
system is known as a Kripke structure; more formally defined as a
tuple M = (S, p,), where:

— S the finite set of states,

— pC S xS isthe transition relation,

- 7w : S — 24 is the labeling function, which means

that 7 (s) is the set of propositions that hold in a state s € S.

The model checking problem can thus be formulated as: “For a
Kripke structure M = (S, p,7), a state s and an LTL formula
¢, is it true for all infinite paths * = (so, s1,...) € S“ (with
so =) that & = (m(s0),m(s1),...) |E ¢”. For practical reasons
this is often reformulated as looking for any x such that & =
(m(s0),7(51),...) E -, ie. M = ¢ holds if no such x can
be found.

By treating the set of paths starting in a specific state s as a lan-
guage L5 the problem can compactly be expressed as checking
whether L s N Loy = (0. This means that the LTL model check-
ing problem can be solved by constructing BA-, and BAj;,s from
the LTL formula ¢ and the Kripke structure M respectively, and
then checking the automaton BA-, ® BAu,s for emptiness (®
is the synchronous composition of two automata, and the result-
ing automata recognizes exactly the infinite sequences recognized
by both automata). This check can be done by an algorithm that
checks whether the constructed automata can reach an accepting
cycle from any of its initial states (Clarke et al. 2000). The time
complexity is linear in the size of the new automata.

2.4 Testing an LTL to Biichi automata translation

The theoretical aspect of how to test an LTL formula translation
into Biichi automata is thoroughly covered by Tauriainen and Hel-
janko (2002). Here we briefly describe the most important aspects
from Sect. 3 of (Tauriainen and Heljanko 2002). The methods de-
scribed do not aim to prove the correctness of the implementation,
but instead perform tests to detect inconsistencies in the implemen-
tations. Most of the ideas test the results given by an LTL-to-Biichi
translator with the results from using other implementations. One
particular situation could be to test different optimizations against

Test 1

¢ —¢

OK

Test 2

¢ —P

Test 3

Generate
¢ -0 M

LTL-to-Biichi
translator B
Ay

Fail OK Fail

Figure 1. Testing an LTL-to-Biichi translation

(a stable) reference implementation. This is something that we
have used frequently. We also used two reference implementations
WRING by Somenzi and Bloem (2000) and LTL2BUCHI by Gian-
nakopoulou and Lerda (2002).

Interestingly, we found that WRING fails for some particular in-
put. Therefore, in order to be able to use WRING as a reference
implementation, we implemented a pre-condition check that guar-
antee that the generated formula is one that does not crash WRING'.

2.4.1 Language property tests

The first two tests use properties of the languages £, and £, in
particular we use the fact that for each £ € (247), ¢ € L, if and
only if £ & L-.,. Thus we can conclude that:

e The languages L, and L-, are disjoint, which means that
LoNLoy=10

e Each ¢ € (27)% belongs to either £, or £, and therefore
L, UL, = (247)

The first test is easy to realize in practice, we just need a way to
generate random LTL formulas. For each formula ¢ we produce
BA, and BA-, using different translators and check that the
intersection (BA, ® BA-,) is empty. If the intersection is non-
empty we know that one (or both) translator did not produce the
correct behavior.?

The second test is harder to utilize directly. The sequences
involved are infinite (and infinitely many), thus we can not generate
them all, and to algorithmically check for universality is PSPACE-
complete (as shown by Vardi (1996)). The test can (as shown
in Fig. 1) be reduced to emptiness checking, by complementing

I'In the documentation, it is claimed that the reason for the crashes is an
incompatibility between WRING and more recent versions of Perl

2'We should also note that this test itself is not enough since a translator that
produces the empty automaton for all LTL formulas would pass the test.

BA,U BA-,. However, the complementation automata of a (non-
deterministic) Biichi automata may have an exponential blow-up in
size. (Currently the upper bound is (0.97n)" states and the lower
bound is (0.76n)™ states, see Vardi (2007).) Therefore, instead of
using complementation, we simplify this test into something which
can easily be used in QuickCheck, as shown in Sect. 3. Since we
are only testing for defects, a simplified test is of interest.

2.4.2 Model checking result tests

For a given model (Kripke structure) M and a given LTL formula
© the value of M = ¢ is well defined by the semantics of LTL.
This means that we can use the result of the model checking
problem to test the LTL-to-Biichi translations against each other.
Using two different LTL-to-Biichi translators we can produce BA}D
and BA?D. Then we translate the model M into another automaton
BAj. The test then compare the results of the emptiness checks
for BA}, @ BAn and BAZ, ® BA. The three tests are graphically
described in Fig. 1.

3. Properties

In this section the QuickCheck specification for the testing of
the LTL-to-Biichi translation is introduced. Most of the section is
devoted to explaining how the tests from Sect. 2.4 are implemented
in terms of QuickCheck.

3.1 LTL formula generator

Random LTL formulas are generated by the QuickCheck generator
presented in Fig. 2. The generator is recursively defined. In the base
case we pick an element from the alphabet, and in the recursive
case we pick one of the seven different ways to produce an LTL
formula from sub-formulas. Note, here we use the more common
operators always () and eventually (Qp). These operators are
defined in terms of the until-operator (Oy = true U ¢ and Qp =
—(trueU—¢)). In the generator, the LETSHRINK-macro is used to be

able to shrink generated formulas when a counter example is found.
(Refer to Hughes (2007) for a thorough introduction to QuickCheck
and its shrinking facility, and Arts et al. (2008) for an explanation
of LETSHRINK.) The divisors (2 and 4) are rather arbitrarily chosen
since they result in reasonably complex LTL formulas. An alphabet
is a sorted non-empty list of propositional variables (chosen from
a-f). The SIZED-macro is used to grab the implicit size-parameter
in QuickCheck and pass it to the formula generator.

Iprop () —>
elements ([{ 1prop ,X}
|| X<— [a.b,c.d.e,f]]).

alpha () —
7LET(Lst, [lprop() | list(lprop())],
lists :usort(Lst)).

1tl_formula () —>
?SIZED (Size ,
?7LET(Alpha, alpha(),
Itl_formula (Size, Alpha))).

Itl_formula (0, Alpha) —>
elements (Alpha);
Itl_formula (Size , Alpha) —>
Small = Itl_formula(Size div 2,Alpha),
Smaller = Itl_formula(Size div 4,Alpha),
oneof (
[1tl_formula (0, Alpha),
7LETSHRINK ([Phi , Psi],[Smaller , Smaller],
{land ,Phi, Psi}),
?LETSHRINK ([Phi , Psi],[Smaller , Smaller],
{lor ,Phi,Psi}),
?LETSHRINK ([Phi] ,[Small],{next,Phi}),
?LETSHRINK ([Phi],[Small],{eventually ,Phi}),
?LETSHRINK ([Phi] ,[Small],{always ,Phi}),
?LETSHRINK ([Phi] ,[Small],{Inot ,Phi})
.

Figure 2. LTL formulas generator

3.2 Testl

The first test is implemented in the property prop_test1, listed in
Fig. 3. The property is parametrized by the LTL-to-Biichi transla-
tion functions to use B1 and B2. The rest of the property is straight-
forward, we create the two Biichi automata, calculate the intersec-
tion and check for emptiness.

3.3 Test2

The second test is implemented in the property prop-test2, listed
in Fig. 4. This property is also parametrized by the LTL-to-Biichi
translation functions to use B1 and B2. Since it is not computation-
ally feasible to check exactly what is presented we have simplified
the test a bit. We have introduced a simple deterministic Kripke
structure, which we denote a witness. A witness is in effect an in-
finite sequence of sets of labels produced by a prefix and a (non-
empty) loop. The generator for witness is also presented in Fig.
4. The test checks that exactly one of the two automata BA, and
BA-, accepts the witness.

3.4 Test3

The implemented property for the third test is very similar to the
second test. Instead of generating BA, and BA-, we generate
BA!, and BA? and check that their model checking results agree
for different witnesses W. The third test property is listed in Fig. 5.

prop_-testl (Bl, B2) —>
2FORALL(Phi, (ltl_-formula()),

begin
Bul = BI1(Phi),
Bu2 = B2(negate (Phi)),
BulBu2 = buchi:intersection (Bul, Bu2),
buchi:is_empty (BulBu2)

end) .

Figure 3. Test 1 — QuickCheck property

witness (Alpha) —

#witness{alpha = Alpha,
prefix = list(lbl_set(Alpha)),
loop = [Ibl_set (Alpha)

| list(lbl_set(Alpha))]}.

prop_-test2 (Bl, B2) —>
9FORALL(Alpha, alpha(),

9FORALL (
{Phi, W},
{1tl_formula (Alpha), witness (Alpha)},
begin
Bul = B1(Phi),
Bu2 = B2(negate(Phi)),
i

is_witness (W, Bul) =/=
is_witness (W, Bu2)
end)) .

Figure 4. Test 2 — QuickCheck property

prop_-test3 (Bl, B2) —>
7FORALL(Alpha, alpha(),
?FORALL (
Phi, 1tl_-formula (Alpha),
begin
Bul = BI(Phi),
Bu2 = B2(Phi),
7FORALL (W, witness (Alpha),
is_witness (W, Bul) ==
is_witness (W, Bu2))
end)).

Figure 5. Test 3 — QuickCheck property

3.5 Additional tests

The properties listed above cover all of the high level properties for
the LTL-to-Biichi translation. In order to help during development
we used many more, more fine grained, properties that only covered
small parts of the translation. We also wrote some tests to check
the intersection function used in the tests listed above. One
example of a property for the intersection function is listed in Fig.
6. This test checks that for all Biichi automata B1 and B2, if the
intersection B1B2 accepts a witness, then also B1 as well as B2
should accept the same witness.

When using this test, we ran into one of the standard problems
with QuickCheck; namely that randomly generated data is not good
enough. For a random (non-empty) Biichi automaton B, only about
2 out of 100 random witnesses are accepted by B. For the more
complex B1B2 in the intersection property, the numbers are even
worse: only in about 1 out of 250 generated combinations of B1B2
and W, was W accepted by B1B2.

The general solution to this problem is to use a better (more
specific) data generator. In our case the problem is two-fold; (1)
the intersection of two random non-empty Biichi automata is often

prop-intersection () —>
?7FORALL(A, alpha(),
7FORALL({B1, B2}, {buchi(A), buchi(A)},
begin
BIB2 = buchi:intersection (Bl, B2),
?FORALL (W, witness (A),

(not is_witness (W, B1B2)) orelse
(is_witness (W, Bl) andalso
is_witness (W, B2)))

end)) .

Figure 6. Intersection — QuickCheck property

prop-intersection () —
?7FORALL(A, alpha(),
FORALL({B1, B2}, {buchi(A), buchi(A)},

begin
BIB2 = buchi:intersection (B1, B2),
?2IMPLIES (

not buchi:is_empty (B1B2),

P7FORALL (W, witness_for_buchi(B1B2),
(is_witness (W, Bl) andalso
is_witness (W, B2))))

end)).

Figure 7. Intersection — optimized QuickCheck property

an automaton that do not accept any witnesses and (2) a random
witness is not very likely to be accepted by a non-empty Biichi au-
tomaton. Therefore, we added a filter (using the IMPLIES-macro
in QuickCheck) for empty automata and implemented a new gen-
erator witness_for_buchi (B), that given a non-empty Biichi au-
tomaton B produces a witness that is accepted by B.

The trick is to search for an accepting cycle (picking one ran-
domly if there are several) in the automaton, and use this together
with a suitable prefix leading up to the cycle as a witness. For a
non-empty automaton this generator, by construction, always gives
a witness accepted by the automaton. This might not always be de-
sired, but for the intersection property we are interested in the case
when W is witness for B1B2 and witness_for_buchi is the perfect
generator to use. In Fig. 7 the optimized property is presented.

4. Implementation

After having all the QuickCheck properties available, as well
as some already tested Biichi automaton manipulation functions
(intersection, is_empty, etc), we were ready to implement
the LTL-to-Biichi translator. Most of what is implemented has al-
ready been described elsewhere, we have looked for inspiration in
several different places and combined many bits and pieces. Most
well performing LTL-to-Biichi translator consist of the following
three parts:

1. A rewrite engine, which aims to simplify the LTL formula.
It normally uses a fixed set of (heuristically chosen) rewrite
rules. One example is well documented by Somenzi and Bloem
(2000).

2. Core translation algorithm — Construction of the Biichi automa-
ton from the re-written LTL formula. There are two main al-
gorithms for this phase: the tableau-based algorithms (for ex-
ample described by (Gerth et al. 1996)), and algorithms based
on alternating automata as introduced by Gastin and Oddoux
(2001).

3. If needed, a translation of the result in phase 2, into a standard
Biichi automaton. (Many translations works with intermediate

automata formats, such as generalized Biichi automata, alter-
nating automata, transition-based Biichi automata, etc.) There-
after, reductions and optimizations, such as simulation reduc-
tions (see for example Etessami and Holzmann (2000)) and re-
moval of non-reachable and non-accepting states, are applied
to the Biichi automaton.

4.1 Rewrite LTL formula

Implementation of a rewrite functionality is fairly straightforward.
You have to choose which rewrite rules to use and implement the
application of a rewrite rule. We chose to use the rewrite rules de-
scribed by Somenzi and Bloem (2000), these rules are the result
of some thorough experiments and have also been used in (Gian-
nakopoulou and Lerda 2002). The rules aim to simplify the LTL
formula in a way that is (according to the heuristics) favorable in
terms of the size of the resulting Biichi automaton. For example the
LTL formula (X ¢) U (X ¢) is re-written into X (¢ U v). Testing
the rewrite facility using the properties described in Sect. 3 (by us-
ing one translator function with rewriting and one function without)
quickly removed some (rather silly) implementation errors.

4.2 Core translation algorithm

As indicated above, there are two main alternatives for this phase:
the tableau-based algorithms and algorithms based on alternating
automata. We have chosen to use a tableau-based algorithm. We im-
plemented an algorithm in the style described by Giannakopoulou
and Lerda (2002). The main reason for choosing a tableau-based
algorithm was non-technical, we simply were more familiar with
this style of algorithm. We believe that a core translation based on
alternating automata would have performed at about the same level.

The translation algorithm generates transition-based general-
ized Biichi automata, which carry labels on transitions instead of
the normal state-based automata. The benefit of using a transition-
based automata for the core translation is that more states can possi-
bly be merged during translation. The result is a potentially smaller
resulting automaton. The algorithm is tableau-based and works by
expanding ¢ U ¢ into ¥ V (¢ A X (¢ U 9)). Step by step the
automaton is build up, while keeping track of equivalent states as
well as acceptance conditions.

By using the QuickCheck properties and the (small) counter
examples it produced it was a rather painless process to get the
core translation algorithm correctly (at least to the level of passing
a very large number of tests) implemented.

4.3 Degeneralization

Since the core translation algorithm produces a (transition-based)
generalized Biichi automaton, while McErlang only supports non-
generalized automata, we needed to implement degeneralization.
Again we follow what is described by Giannakopoulou and Lerda
(2002), with some additions. A generalized automaton has (possi-
bly) more than one set of accepting states, and an infinite sequence
is accepting only if it passes through all accepting sets infinitely
often. To convert a generalized automaton into a non-generalized
automaton we need to translate the concept of visiting all states
into a single accepting state set. The approach taken is to use a
second specialized automaton called a degeneralizer. The degener-
alizer has a size (and shape) that corresponds directly to the number
of accepting sets in the generalized automaton. The degeneralizer
“counts’ the visits of accepting sets, and all accepting cycles in the
degeneralizer visit all accepting sets. To produce the final degener-
alized automaton the synchronous product between the generalized
automaton and the degeneralizer is computed. (For a thorough ex-
planation of degeneralization, refer to (Gastin and Oddoux 2001).)

Although the size and shape are fixed, the order in which the ac-
cepting sets are counted can be varied. If the number of accepting

sets is m, there are n! variations. Normally a heuristic, for exam-
ple based on the sizes of the accepting sets, is used to select an
order. Using some additional QuickCheck properties that compare
the size of the result, we performed some experiments with differ-
ent ordering heuristics. We tried to avoid having to calculate (and
use) all possible degeneralizers, but unfortunately we could not find
a heuristics that was consistently better than the random choice.
However, since we are not worried about the performance of the
translator, we decided to settle for a computationally more expen-
sive solution. That is, we generate all possible automata and pick
the best result after computing the synchronous product. This en-
sures that we get the smallest final automaton. We should note, that
in many cases the reductions described in the next section actually
produces the same final automaton regardless of the degeneralizer
used. Finally, the justification for this more expensive solution is
simply that more is hopefully gained in the model checking phase
by having a smaller automaton, than what is spent in translation.

4.4 Reductions and optimizations

In automata theory there is a multitude of different reduction tech-
niques and optimizations proposed. Some perform well on some
structures, while others work best in completely different cases.
We have chosen to implement some reduction algorithms that have
proved useful for others, see for example (Etessami and Holz-
mann 2000; Giannakopoulou and Lerda 2002; Somenzi and Bloem
2000).

We have particularly opted for algorithms that reduce the size of
the automaton, there are other algorithms that for example tries to
make the automaton more deterministic (but also larger), see (Se-
bastiani and Tonetta 2003). Although a more deterministic automa-
ton is sometimes preferable, we have chosen not to consider it in
our implementation.

4.4.1 Simple reductions

We have implemented a couple of simple reductions:

¢ Remove unnecessary transitions — Unnecessary transitions
are removed. For example two transitions from state X to state
Y with the labels aAb and aA—b can be merged to one transition
with the label a.

¢ Remove non-reachable states — States that cannot be reached
from an initial state can be removed (together with their out-
going transitions).

e Remove never accepting states — States, from which it is
impossible to reach an accepting state (or rather an accepting
cycle) can be removed.

¢ Reducing the number of accepting states — Not technically
a reduction, but it is favorable for the particular simulation
reductions we have implemented to have few accepting states.
Thus, accepting states that are not part of a cycle are removed
from the set of accepting states.

It is worth pointing out that these reductions are usually not nec-
essary for the initial result of the translation algorithm. However,
after performing other reductions, also these simple reductions can
be useful.

4.4.2 Bi-simulation reduction

Bi-simulation reduction is a standard reduction algorithm (see
Kanellakis and Smolka (1983)). The reduction algorithm is based
on a color-refinement partitioning of the states. The algorithm is
adapted to the fact that transitions are labeled by conjunctions of
propositional variables rather than just variables, we followed the
algorithm presented by Etessami and Holzmann (2000).

Most problems with the implementation occurred due to the fact
that most algorithm descriptions are rather imperative and thus took
some time to convert into something not-so-ugly looking in Erlang.
Again having the possibility to quickly find small counter examples
when things went wrong helped a lot.

4.4.3 Strong fair simulation reduction

The most elaborate reduction algorithm we implemented was a
strong fair simulation reduction. There are many different versions
of fair simulation (see, e.g. Henzinger et al. (1997)). The version
we implemented is described by Etessami and Holzmann (2000), it
is rather similar to the bi-simulation reduction algorithm. However,
more details are considered and a more fine grained ordering makes
it possible to perform some more complicated reductions.

We had some difficulties implementing the strong fair simula-
tion algorithm, mostly due to a misinterpretation of the algorithm
description. (The i-dominates relation should be seen as a total or-
der, if transition A i-dominates transition B then B cannot also
i-dominate A. This is not clear from the definition.) While looking
for this bug we were actually not helped by the QuickCheck tests,
rather the opposite. Since errors occurred quite infrequently (and
for rather complex automata), we were for a long time looking for a
less fundamental(!!) error. Eventually we found the error, thanks to
more basic debugging techniques, and could quickly verify that the
algorithm implementation was working by running a large number
of tests.

5. Results
[Translator | Max size | Avg. size | Total size |
erl_1tI2buchi 416 17.202 17202
erl_1tI2buchi+red 32 6.15 6150
erl_ItI2buchi+red+rew 31 6.005 6005
WRING 74 10.997 10997
LTL2BUCHI 31 6.066 6066

Table 1. Test results - 1000 random LTL formulas

To measure the performance in terms of size of the resulting
automata we used a simple QuickCheck property, utilizing the
built-in measure functions. An alternative would have been to use
something readily available, like LBTT (Tauriainen 2001), but still,
quite a bit of work would have been needed to write wrappers for
the compared implementations. Therefore, since we had already
used WRING and LTL2BUCHI as reference implementations dur-
ing testing and thus had all the plumbing in place, we settled for
the more lightweight QuickCheck measuring approach. The prop-
erty listed in Fig. 8, is all that is needed to measure the performance
for randomly generated LTL formulas. We test three different ver-
sions of our implementation: only the basic translation, translation
+ reductions and rewriting + translation + reductions.

Running the property for 1000 tests (1000 randomly generated
LTL formulas) gives a result as presented in Table 1. The results
vary slightly due to the random nature of the tests, but the numbers
presented are representative. The table presents the maximal size
of an individual translated automaton, as well as the average size of
the automata.

We see that for random LTL formulas, we perform a lot (about
45%) better than WRING and also slightly (about 1%) better than
LTL2Buchi. It is a result that we are satisfied with, since the alterna-
tive to writing a new implementation was to wrap LTL2Buchi and
use it in McErlang. Nevertheless, we believe that there is still some
room for improvement, and with the properties in place it should
be easy to test new ideas for reduction algorithms in the future.

9%% List of five different translations ,
9%% used in prop-compare_size.
translations () —>
[{"erl_1tl2buchi”,
fun Itl2buchi:translate_basic/1},
{7erl_Itl2buchi+red”,
fun Itl2buchi:translate_norew/1},
{"erl_ltl2buchi+red+rew”,
fun 1tl2buchi:translate/1}
{”wring”,
fun wring_wrap:run/1},
{"1t12buchi”,
fun 1tl2buchi_wrap:run/1}
].

prop_compare_size () —>
7FORALL(Phi, (ltl_formula()),
9%% Filter formulas crashing Wring
?IMPLIES (wring_ok (Phi) ,
begin
Trs = [{N, F(Phi)}
translations ()],
nested_measure (Trs, true)
end)).

| {N, F} <—

Figure 8. Performance measurement property

For two reasons we have not measured the speed of the transla-
tors; (1) it is impossible to fairly compare a native implementation
with wrapped implementations called externally, and (2) the model
checking connection for the translator makes size much more im-
portant than speed.

6. Summary

Using a property driven development for the implementation of an
LTL-to-Biichi translator in Erlang turned out to be a nice experi-
ence. We had a fun time, and the implementation quickly stabilized
into a mature translator. We believe that by first formulating the
properties, we saved time both in testing and debugging and also in
having a clearer picture of what to implement. Also, the shrinking
facilities of QuickCheck meant that we usually got a fairly sim-
ple LTL formula for which the translator produced an incorrect au-
tomaton, which in the end probably reduced the time spent debug-
ging the translator.

However, we should also note that we were helped (quite a
lot) by the implementation task being very well defined. This also
meant that the properties were not too hard to formulate. So, for
situations where a clearly defined and well described algorithm
should be implemented, this style of development is especially well
suited. Having the paper about testing LTL-to-Biichi translations by
Tauriainen and Heljanko (2002) was also very helpful.

In the end we managed to implement an LTL-to-Biichi transla-
tor that performs at least as well as our reference implementations
WRING and LTL2BUCHI.

To further improve the QuickCheck experience it would be good
to directly generate and effectively shrink Biichi automata. Espe-
cially when working with reduction algorithms it would be nice to
not get the smallest LTL formula that translates into an automaton
where the reduction fails, but rather the smallest automaton. We did
implement a generator for Biichi automata, but shrinking them in
an intelligent way was deemed a too complicated task and we did
not have time to investigate this further.

Finally we should also comment on our focus to trade a smaller
resulting automaton for a longer translation time. The run time of
the LTL-to-Biichi translator is usually some couple of hundred mil-
liseconds, while a model checking run could easily spend some

hundred seconds. Thus spending a factor ten longer time in gener-
ation for gaining 10% of the model checking time is still a good
trade-off.

Acknowledgments

This research was sponsored by EU FP7 Collaborative project
ProTest, grant number 215868. Many thanks to the McErlang team
(Lars-Ake Fredlund and Clara Benac Earle) for their efforts in
including the translator in the McErlang release. Also thanks to
Koen Claessen for helpful comments on testing and optimization
of Biichi automata.

References

Thomas Arts, Laura M. Castro, and John Hughes. Testing Erlang data
types with Quviq QuickCheck. In ERLANG ’08: Proc. of the 7th ACM
SIGPLAN workshop on ERLANG, pages 1-8, New York, NY, USA,
2008. ACM.

Kent Beck. Test-driven development : by example. Addison-Wesley,
Boston, MA, 2003.

J.R. Biichi. On a decision method in restricted second order arithmetic. In
Proc. Internat. Congr. Logic, Method. and Philos. Sci., 1960.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Trans. Program. Lang. Syst., 8(2):244-263, 1986.

E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. The MIT
Press, 2000.

C. Benac Earle, L-A. Fredlund, J. A. Iglesias, and A. Ledezma. Verifying
Robocup teams. In Proc. 5th International Workshop, Mochart 2008,
pages 34—48. Springer, 2008.

K. Etessami and G. Holzmann. Optimizing Biichi automata. In CONCUR
"00: Proc. of the 11th International Conference on Concurrency Theory,
pages 153-167, London, UK, 2000. Springer- Verlag.

L-A. Fredlund and J.J. Snchez Penas. Model checking a VoD server using
McErlang. In In proceedings of the 2007 Eurocast conference, Feb 2007.

L-A. Fredlund and H. Svensson. McErlang: A model checker for a
distributed functional programming language. In Proc. of Interna-
tional Conference on Functional Programming (ICFP). ACM SIG-
PLAN, 2007.

P. Gastin and D. Oddoux. Fast LTL to Biichi automata translation. In
CAV ’01: Proc. of the 13th International Conference on Computer Aided
Verification, pages 53—65, London, UK, 2001. Springer-Verlag.

R. Gerth, D. A. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic
verification of linear temporal logic. In Proc. of the Fifteenth IFIP
WG6.1 International Symposium on Protocol Specification, Testing and
Verification XV, pages 3—18, London, UK, UK, 1996. Chapman & Hall,
Ltd.

D. Giannakopoulou and F. Lerda. From states to transitions: Improving
translation of LTL formulae to Biichi automata. In FORTE ’02: Proc.
of the 22nd IFIP WG 6.1 International Conference Houston on Formal
Techniques for Networked and Distributed Systems, pages 308-326,
London, UK, 2002. Springer-Verlag.

T. A. Henzinger, O. Kupferman, and S. K. Rajamani. Fair simulation. In
Information and Computation, pages 273-287. Springer-Verlag, 1997.

J. Hughes. QuickCheck testing for fun and profit. In Michael Hanus, editor,
Practical Aspects of Declarative Languages, volume 4354 of LNCS,
pages 1-32. Springer-Verlag, Berlin Heidelberg, 2007.

P. Kanellakis and S. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. In PODC ’83: Proc. of the second annual
ACM symposium on Principles of distributed computing, pages 228-240,
New York, NY, USA, 1983. ACM.

McErlang — https://babel.Is.fi.upm.es/trac/McErlang/. (Web page, 2009).

A. Pnueli. The temporal logic of programs. In Foundations of Computer
Science, 1977., 18th Annual Symposium on, pages 46-57, Nov 1977.

ProTest Project — http://www.protest-project.eu. (Web page, 2009).

J-P. Queille and J. Sifakis. Specification and verification of concurrent sys-
tems in CESAR. In Proc. of the 5th Colloquium on International Sym-
posium on Programming, pages 337-351, London, UK, 1982. Springer-
Verlag.

R. Sebastiani and S. Tonetta. “more deterministic” vs. “smaller” Biichi
automata for efficient LTL model checking. In 12th IFIP WG 10.5
Advanced Research Working Conference, CHARME. Springer-Verlag,
2003.

F. Somenzi and R. Bloem. Efficient Biichi automata from LTL formulae. In
CAV ’00: Proc. of the 12th International Conference on Computer Aided
Verification, pages 248-263, London, UK, 2000. Springer-Verlag.

H. Svensson and L-A. Fredlund. A more accurate semantics for distributed
Erlang. In Erlang '07: Proc. of the 2007 SIGPLAN workshop on Erlang
Workshop, pages 43-54, New York, NY, USA, 2007. ACM.

H. Tauriainen and K. Heljanko. Testing LTL formula translation into Biichi
automata. STTT, 4(1):57-70, 2002.

Heikki Tauriainen. 1btt 1.0.0 — an LTL-to-Biichi translator testbench.
Helsinki University of Technology, Laboratory for Theoretical Com-
puter Science, Espoo, Finland, December 2001. Software.

M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Proc. of the VIII Banff Higher order workshop conference on Logics for
concurrency : structure versus automata, pages 238-266, Secaucus, NJ,
USA, 1996. Springer-Verlag New York, Inc.

Moshe Y. Vardi. The Biichi complementation saga. In STACS 2007, volume
4393 of Lecture Notes in Computer Science, pages 12-22. Springer
Berlin / Heidelberg, 2007.

M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st IEEE Symposium on Logic in Com-
puter Science (LICS’96), pages 332-344, New York, 1986. IEEE Com-
puter.

Pierre Wolper, Moshe Y. Vardi, and A. Prasad Sistla. Reasoning about
infinite computation paths. In Foundations of Computer Science, 1983.,
24th Annual Symposium on, pages 185-194, Nov. 1983.

