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Abstract. This paper addresses a problem arising in automated proof
of invariants of transition systems, for example transition systems mod-
elling distributed programs. Most of the time, the actual properties we
want to prove are too weak to hold inductively, and auxiliary invariants
need to be introduced. The problem is how to find these extra invari-
ants. We propose a method where we find minimal counter examples to
candidate invariants by means of automated random testing techniques.
These counter examples can be inspected by a human user, and used to
adapt the set of invariants at hand. We are able to find two different
kinds of counter examples, either indicating (1) that the used invariants
are too strong (a concrete trace of the system violates at least one of
the invariants), or (2) that the used invariants are too weak (a concrete
transition of the system does not maintain all invariants). We have de-
veloped and evaluated our method in the context of formally verifying an
industrial-strength implementation of a fault-tolerant distributed leader
election protocol.

1 Introduction

This paper gives a partial report on our experiences on using (semi-)automated
theorem proving to formally verify safety properties of an industrial-strength
implementation of a fault-tolerant leader election protocol in the programming
language Erlang [19].

Leader election is a basic technique in distributed systems; a fixed set of
processes has to determine a special process, the leader, among them. There is
one basic safety property of such algorithms (”there should never be more than
one leader”), and one basic liveness property ("eventually there should be one
leader”). In fault-tolerant leader election, processes can die and be restarted at
any point in time (during or after the election), making the problem immensely
tricky.

Erlang is a language for distributed programming originally developed for
implementing telecommunication systems at Ericson [3,2]. A key feature of the
systems for which Erlang was primarily designed is fault-tolerance; Erlang has
therefore built-in support for handling failing processes.

The implementation of the leader election algorithm we verified was devel-
oped by us, after we had uncovered some subtle bugs in an earlier existing imple-
mentation using testing techniques [4]. Our new implementation is based on an



adaptation of a standard fault-tolerant leader election algorithm by Stoller [18]
and is now a standard library in Erlang. In our implementation, we had to make
some changes to Stoller’s original algorithm because of the way processes commu-
nicate in Erlang (via asynchronous message passing over unbounded channels)
and the way fault-tolerance is handled in Erlang (a process can monitor another
process, in which case it receives a special message when the other process dies).

From our previous experience, we knew that it is extremely hard to get these
kinds of algorithms right. Indeed, we started by extensively testing the new im-
plementation using our testing techniques [4], leading to our increased confidence
in the correctness of the implementation. However, we had some reasons to be
cautious. Firstly, our implementation was based on an adaptation of Stoller’s
original algorithm, so even if Stoller’s algorithm were correct, our adaptation of
it might not be. Secondly, Stoller never gives a formal proof of correctness in his
paper [18]. His algorithm is in turn an adaptation of a classical leader election
algorithm (called ” The Bully Algorithm”) by Garcia-Molina, which in turn only
has been proven correct in the paper in a very informal way [12]. Stoller claims
that his modifications are so minor that giving a new proof is not needed: “The
proofs that the Bullyrp Algorithm satisfies SLE1 and SLE2 are very similar to
the proofs of Theorems A1 and A2 in [GM82] and are therefore omitted.”

When we decided to formally verify our implementation, we first tried a
number of different model checking methods (among others SPIN [13] and our
own model checker McErlang [11]). Unfortunately, these could only be used for
extremely small and unconvincing bounds on the number of processes, sizes of
message queues, and number of times processes can die. This is partially due
to the huge state space generated by the combination of asynchronous message
passing and fault-tolerance.

The alternative we eventually settled on was to prove invariants of the sys-
tem inductively by means of automated first-order logic theorem proving. Here,
we model the implementation as an abstract transition system, and express the
properties we want to prove as invariants on the states of the transition system.
The reasons we chose this approach were (1) using first-order logic allowed us to
prove the implementation correct for any number of processes, using unbounded
message queues and an unbounded number of occurring faults, and (2) auto-
mated first-order theorem provers are relatively autonomous, in principle only
requiring us to interact with the verification process at the level of choosing the
invariants.

The main obstacle in this approach is that, most often, the (relatively small)
set of invariants one is interested in establishing is not inductively provable. This
means that the original set of invariants has to be strengthened by changing
some of the invariants or by augmenting the set with new invariants, until the
set is strong enough to be inductive. Very often, this is a non-trivial and labour-
intensive task. In our case, we started with one invariant (”there should not be
more than one leader”) and we ended up with a set of 89 invariants. This is the
sense in which we call our method semi-automated; if the right set of invariants
is picked (manually), the proof is carried out automatically. Thus, the user of



the method does not have to carry out proofs, but only has to formulate proof
obligations.

The task of finding the right set of invariants is not only non-trivial, but
can also be highly frustrating. The reason is that it is very easy for a user, in
an attempt to make the set of invariants stronger, to add properties to the set
which are in fact not invariants. When certain invariants can not be proven, the
first-order theorem provers we use do not in general provide any reason as to
why this is the case, leaving the user in the dark about what needs to be done
in order to get the proof through.

We identified 4 different reasons for why a failed proof of a given invariant
occurs: (1) the invariant is invalid, i.e. there exists a path from the initial state to
a state where the invariant is falsified, (2) the invariant is valid, but too weak, i.e.
it indeed holds in all reachable states, but it is not maintained by the transition
relation, (3) the invariant is valid and is maintained by the transition relation,
but the current axiomatization of the background theories is too weak, and (4)
the invariant is valid and should be provable, but the theorem prover at hand
does not have enough resources to do so.

The remedies for being in each of these cases are very different: For (1), one
would have to weaken the invariant at hand; for (2) one would have to strengthen
it; for (3) one would have to come up with extra axioms or induction principles;
for (4) one would have to wait longer or break the problem up into smaller bits.

Having a concrete counter example to a proof attempt would show the dif-
ference between cases (1), (2) and (3). Thus, having a way of finding counter
examples would greatly increase the productivity of the proposed verification
method. Providing counter models to first-order formulas (or to formulas in
more complex logics) is however an undecidable problem.

We have developed two novel methods, based on random property-based
testing using the automated testing tool QuickCheck [9], that, by automatically
re-using the invariants as test generators and test oracles, can automatically
and effectively find counter examples of categories (1) and (2). Finding counter
examples of category (3) remains future work.

Establishing inductive invariants is a very common method for verifying soft-
ware (in particular in object-oriented programs, see for example [5,21]). We be-
lieve that the methods for finding counter examples in this paper can be adapted
to other situations than verifying distributed algorithms.

The contributions of this paper are:

— A classification of different categories of counter examples in the process of
establishing inductive invariants using a theorem prover

— Two methods for finding two of the most common categories of counter
examples based on random testing

— An evaluation of the methods in the context of the verification of an industrial-
strength implementation of a leader election protocol

The rest of the paper is organized as follows. The next section explains the
method of verification we use in more detail. Section 3 explains the testing tech-



niques we use. Section 4 reports on the results of our method in the verification
of the leader election implementation. Section 5 concludes.

2 Verification Method

In this section, we describe the basic verification method we use to prove in-
variants. The method is quite standard; an earlier description of the method
in the context of automated first-order logic reasoning tools can be found in
[8]. The system under verification and the invariants are described using three
components:

— A predicate Init describing the initial state,

— A predicate Inv describing the invariant,

— A predicate transformer [Sys] that abstractly describes one transition of the
system.

For the predicate transformers, we borrow notation also used in dynamic
logic [5] and the B-method [1,21]. For a program S and a post-condition @,
we write [S]Q to be the weakest pre-condition for S that establishes @ as a
post-condition. This in turn means that we can write

P—1[51Q

which has the same meaning as the Hoare triple {P}S{Q}; in all states where
P holds, making the transition described by S leads to states where @) holds.

The language we use to describe Sys is very simple. The three most im-
portant constructs are assignments, conditionals, and non-deterministic choice.
The definition of predicate transformers we use is completely standard, and we
will only briefly discuss the concepts here. For more details, the reader can con-
sult [21]. Here are the definitions for the predicate transformers for assignments,
conditionals, and non-deterministic choice, respectively.

[x:=¢]P = Ple/z}
[ifQthen SelseT| P = (Q — [S|P)A(—Q — [T]|P)
[S|TIP = [S|PA[T|P

Establishing Inv as an invariant amounts to proving the following two state-
ments:

Init — Inv

Inv — [Sys] Inv
In practice, Inv is really a conjunction of a number of smaller invariants:

Init — Invy A Invg A --- A Inv,
Invy A Invg A -+ A Inv, — [Sys| (Invy A Inva A -+ A Invy,)



The above two proof obligations are split up into several sub-obligations; for the
initial states, we prove, for all ¢, several obligations of the form:

Init — Inv;

For the transitions, we prove, for all i, several obligations of the form:

/\ Inv; | — [Sys| Inv;
JEP;

So, for each invariant conjunct Inwv;, we have a subset of the invariants P; that
we use as a pre-condition for establishing Inv;. Logically, we can use all invari-
ants Inv; as pre-condition, but in practice the resulting proof obligations would
become too large to be manageable by the theorem provers we use. Also, from
a proof engineering point of view, it is good to “localize” dependencies, so that
when the set of invariants changes, we only have to redo the proofs for the obli-
gations that were involved in the invariants we changed. (Note that the set P;
can actually include the invariant Inv; itself.)

To simplify the problems as much possible, we also use an aggressive case
splitting strategy, in the same way as described in [8]. Thus each of the above
proof obligations is proved in many small steps.

In Fig. 1 we show an example of an invariant. The function host(p) returns
the host for a given process p, the predicate elem(m, ¢) is true if a message m
is present in a message queue ¢. In this example we have an incoming message
queue queue(h) for each host h. (This simplification from having a message
queue per process is possible since there is only one process alive per host.)

V Pid, Pid2.( The invariant states that Halt-messages are
(elem(m_Halt(Pid), only sent to processes with lower priority: If
queue(host(Pid2)))  there is a Halt-message from Pid in the queue

— (host(Pid2) > host(Pid)) of host(Pid2), then host(Pid2) is larger than

) host(Pid). (Hosts with low numbers have high

) priority.)

Fig. 1. Example invariant

2.1 Failed Proof Attempts

This paper deals with the problem of what to do when a proof attempt of
one of the proof obligations fails. Let us look at what can be the reason for a
failed proof attempt when proving the proof obligations related to a particular
candidate invariant Inv;. We can identify 4 different reasons:

(1) The candidate invariant Inv; is not an invariant of the system; there
exists a reachable state of the system that falsifies Inwv;.



(2) The candidate invariant Inv; actually is an invariant of the system, but
it is not an inductive invariant. This means that there exists an (unreachable)
state where all invariants in the pre-condition set P; of Inv; are true, but after
a transition, Inwv; is not true. This means that the proof obligation for the
transition for Inv; cannot be proven.

(3) The candidate invariant Inv; actually is an invariant of the system, and it
is an inductive invariant. However, our background theory is not strong enough
to establish this fact. The background theory contains axioms about message
queues, in what order messages arrive, what happens when processes die, etc.
If these are not strong enough, the proof obligation for the transition for Inv;
cannot be proven.

(4) The proof obligations are provable, but the theorem prover we use does
not have enough resources, and thus a correctness proof cannot be established.

When a proof attempt for a proof obligation fails, it is vital to be able
to distinguish between these 4 cases. The remedies in each of these cases are
different:

For (1), we have to weaken the invariant Inv;, or perhaps remove it from the
set of invariants altogether.

For (2), we have to strengthen the set of pre-conditions P;. We can do this by
strengthening some invariants in P; (including I'nv; itself), or by adding a new
invariant to the set of invariants and to P;.

For (3), we have to strengthen the background theory by adding more axioms.

For (4), we have to simplify the problem by for example using explicit case-
splitting, or perhaps to give the theorem prover more time.

2.2 Identifying the Categories

How can we identify which of the cases (1)-(4) we are in? A first-order logic
theorem prover does not give any feedback in general when it does not find
a proof. Some theorem provers, including the ones we used (Vampire [20], E-
prover [16], SPASS [10], and Equinox [7]) do provide feedback in certain cases,
for example in the form of a finite-domain counter model or a saturation, but
this hardly ever happens in practice.

One observation that we can make is that for cases (1)-(3), there exist counter
examples of different kinds to the proof obligations.

For (1), the counter example is a concrete trace from the initial state to the
reachable state that falsifies the invariant Inv;.

For (2), the counter example is a concrete state that makes the pre-conditions
P; true, but after one transition the invariant Inwv; does not hold anymore.

For (3), the counter example is a concrete counter model that makes the
background theory true but falsifies the proof obligation. This counter model
must be a non-standard model of the background theory, since the proof obli-
gation is true for every standard model (which is implied by the fact that no
concrete counter example of kind (2) exists).



We would like to argue that, if the user were given feedback consisting of (a)
the category of counter example above, and (b) the concrete counter example,
it would greatly improve productivity in invariant-based verification.

In the next section, we show how we can use techniques from random testing
to find counter examples of type (1) and (2) above. We have not solved the
problem of how to find counter examples of type (3), which remains future
work. (This is an unsolvable problem in general because of the semi-decidability
of first-order logic.) Luckily, cases (1) and (2) are most common in practice,
because, in our experience, the background theory stabilizes quite quickly after
the start of such a project.

We would like to point out a general note on the kind of counter examples
we are looking for. Counter examples of type (1) are counter examples in a
logic in which we can define transitive closure of the transition relation. This is
necessarily a logic that goes beyond first-order logic. This logic for us exists only
on the meta-level, since we are merely performing the induction base case and
step case with theorem provers that can not reason about induction. Counter
examples of type (2) are only counter examples of the induction step (and do not
necessarily imply the existence of counter examples of the first kind). In some
sense, these can be seen as non-standard counter examples of the logic used
in type (1) counter examples. Counter examples of type (3) are also counter
examples of the induction step, but they do not follow the intended behavior
of our function and predicate symbols, and are therefore non-standard counter
examples of the induction step.

3 Finding Counter Examples by Random Testing

This section describes the random testing techniques that we used to find con-
crete counter examples to the proof obligations.

3.1 QuickCheck

QuickCheck [9] is a tool for performing specification-based random testing, orig-
inally developed for the programming language Haskell. QuickCheck defines a
simple executable specification logic, in which universal quantification over a set
is implemented as performing random tests using a particular distribution. The
distribution is specified by means of providing a test data generator. QuickCheck
comes equipped with random generators for basic types (Integers, Booleans,
Pairs, Lists, etc) and combinator functions, from which it is fairly easy to build
generators for more complex data structures.

When QuickCheck finds a failing test case (a test case that falsifies a prop-
erty), it tries to shrink this test case by successively checking if smaller variants
of the original failing test case are still failing cases. When the shrinking process
terminates, a (locally) minimal failing test case is presented to the user. The user
can provide custom shrinking functions that specify what simplifications should
be tried on the failing case. This is a method akin to delta debugging [22].



For example, if we find a randomly generated concrete trace which makes an
invariant fail, the shrinking function says that we should try removing one step
from the trace to see if it is still a counter example. When the shrinking process
fails, the trace we produce is minimal in the sense that every step in the trace
is needed to make the invariant fail. One should note that it is very valuable to
have short counter examples; it drastically reduces the time spent on analyzing
and fixing the errors found.

3.2 Trace counter examples

A trace counter example is a counter example of type (1) in the previous section.
We decided to search for trace counter examples in the following manner (this is
inspired by ’State Machine Specifications’ in [14]). Given a set of participating
processes, we can construct an exhaustive list of possible operations (examples
of operations could be: process X receives a Halt-message, process Y crashes,
process Z is started, etc). We constructed a QuickCheck generator that returns
a random sequence of operations. To test the invariant we then create the initial
state for the system (where all participants are dead and all message queues are
empty) and apply the operation sequence. The result is a sequence of states, and
in each state we check that the invariant holds.

If a counter example to the invariant is found, shrinking is performed by sim-
ply removing some operations. To further shrink a test case we also try to remove
one of the participating processes (together with its operations). We illustrate
how all of this works with the (trivially incorrect) invariant VPid.—isLeader(Pid)
(i.e. there is never a leader elected). Formulated in QuickCheck, the property
looks as follows:

prop_NeverALeader =
\path -> checkPath leStoller (forAll pid (nott (isLeader pid))) path

We use the function checkPath, which takes three arguments: a model of an
Erlang program (in this case leStoller), a first-order formula (the property)
and a trace (called path), and checks that the given formula is true for all states
encountered on the specified path. The QuickCheck property states that the
result should be true for all paths. Running QuickCheck yields:

*QCTraceCE> quickCheck prop_NeverALeader
**xx Fajled! Falsifiable (after 3 tests and 3 shrinks):
Path 1 [AcStart 1]

The counter example is a path involving one process (indicated by “Path 1”,
and one step where we start that process (indicated by “AcStart 1”), and clearly
falsifies the property. (The leader election algorithm is such that if there is only
a single participant, it is elected immediately when it is started.) This counter
example has been shrunk, in 3 shrinking steps, from an initial, much larger,
counter example. The steps it went through, removing unnecessary events, in
this case were:



Path 1 [AcOnMsg 1 AcLdr,AcOnMsg 1 AcDown,AcOnMsg 1 AcAck,AcOnMsg 1 AcHalt,
AcStart 1,AcStart 1,AcOnMsg 1 AcNormQ,AcPer 1]

Path 1 [AcStart 1,AcStart 1,AcOnMsg 1 AcNormQ,AcPer 1]

Path 1 [AcStart 1,AcStart 1]

Path 1 [AcStart 1]

Here, “AcOnMsg p m” indicates that process p receives a message of type m.
The different message types (“AcLdr”, “AcDown”, “AcAck”, etc.) are part of the
internal details of Stoller’s leader election protocol [18] and are not explained
here.

Being able to quickly generate locally minimal counter examples to candidate
invariants greatly improved our productivity in constructing a correct set of
invariants.

3.3 Induction step counter examples

Step counter examples are counter examples of type (2). To find step counter
examples is more challenging. Step counter examples can be expected when the
stated invariant holds, but its pre-conditions are too weak to be proved. The
proof fails in the step case, that is there exists a (non-reachable) state s such
that the invariant is true in s, but false in some state ', such that s’ € next(s).
The difference from trace counter examples is that we are now looking for non-
reachable states, which are significantly harder to generate in a good way.

Our first, very naive, try was to simply generate completely random states,
and check if the proof obligation can be falsified by these. We implemented
this strategy by constructing a random generator for states and tried to use
QuickCheck in the straightforward way. However, not surprisingly, this fails mis-
erably. The reason is that it is very unlikely for a randomly generated state to
fulfill all pre-conditions of the proof obligation for the transition. Other naive
approaches, such as enumerating states in some way, do not work either, since
the number of different states are unfeasibly large, even with very small bounds
on the number of processes and number of messages in message queues.

The usual way to solve this in QuickCheck testing is to make a custom
generator whose results are very likely to fulfill a certain condition. However,
this is completely unpractical to do by hand for an evolving set of about 90
invariants.

Instead, we implemented a test data generator generator. Given a first-order
formula ¢, our generator-generator automatically constructs a random test data
generator which generates states that are very likely to fulfill ¢. So, instead
of manually writing a generator for each invariant Inv;, we use the generator-
generator to generate one. We then use the resulting generator in QuickCheck
to check that the property holds.

Our generator-generator, given a formula ¢, works as follows. Below, we
define a process, called adapt that, given a formula ¢ and a state s, modifies s
so that it is more likely to make ¢ true. The generator first generates a completely
random state s, and then successively adapts s to ¢ a number of times. The exact
number of times can be given as a parameter.



The adapt process works as follows. Given a formula ¢ and a state s, we do
the following;:

1 Check if s fulfills ¢. If so, then we return s.
2 Otherwise, look at the structure of ¢.

e If ¢ is a conjunction ¢1 Ao, recursively adapt s to the left-hand conjunct
¢1, and then adapt the result to the right-hand conjunct ¢;.

o If ¢ is a disjunction ¢1 V ¢2, randomly pick a disjunct ¢;, and adapt s
to it.

o If ¢ starts with a universal quantifier Vo € S.(z), S will be con-
cretely specified by the state s. We construct a big explicit conjunction
Nzes ¥ (x), and adapt s to it.

o If ¢ starts with an existential quantifier 3z € S.i)(x), construct a big
explicit disjunction \/ ¢ 9 (z), and adapt s to it.

e If ¢ is a negated formula, push the negations inwards and adapt s to the
non-negated formula.

e If ¢ is a (possibly negated) atomic formula, change s so that the atomic
formula is true, if we know how to (see below). Otherwise, just return s.

Quantifiers in ¢ always quantify over things occurring in the state s, for example
the set of all processes, or the set of all processes currently alive, etc. When
adapting s to ¢, these sets are known, so we can create explicit conjunctions or
disjunctions instead of quantifiers.

When randomly picking a disjunct, we let the distribution be dependent on
the size of the disjuncts; it is more likely here to pick a large disjunct than a
small disjunct. This was added to make the process more fair when dealing with
a disjunction of many things (represented as a number of binary disjunctions).

Finally, we have to add cases that adapt a given state s to the atomic formu-
lae. The more cases we add here, the better our adapt function becomes. Here
are some examples of atomic formulae occurring in ¢, and how we adapt s to
them:

— “message queue ¢l is empty”, in this case we change the state s such that
gl becomes empty;

— “process pl is not alive”, in this case we remove pl from the set of alive
processes in s;

— “queue gl starts with the message Halt”, in this case we simply add the
message Halt to the queue ql.

Note that there is no guarantee that an adapted state satisfies the formula.
For example, when adapting to a conjunction, the adaption process of the right-
hand conjunct might very well undo the adaption of the left-hand conjunct. It
turns out that successively adapting a state to a formula several times increase
the likelihood of fulfilling the formula. There is a general trade-off between adapt-
ing a few states many times or adapting many states fewer times. The results
of our experiments suggest that adapting the same state 4-8 times is preferable
(Sect. 4).



The final property we give to QuickCheck looks as follows; remember the
problem

/\ Inv; | — [Sys] Inv;
JEP;

and let invs be the left hand side of the implication, inv is Inv; and applySys
corresponds to the [J-operation:

prop_StepProofObligation invs inv sys =
\state ->
forAll (adapt formula state) $ \state’ ->
checkProperty formula state’
where formula = and (nott inv’ : invs)
inv’ = applySys sys inv

This can be read as: For all states s, and for all adaptions s’ of that state s to
the proof obligation, the proof obligation should hold. The function adapt is our
implementation of the adapt generator-generator, and checkProperty checks if
a given formula is true in a given state. Remember that we want to find a counter
example state, that is why we try to adapt the state so that the pre-conditions
(invs) are fulfilled but inv’ is not.

The experimental results are discussed in the next section.

4 Results

In this section we present some results from the usage of search for counter
examples in the verification of the leader election algorithm. Since the data
comes from only one verification project it might not be statistically convincing,
but it should be enough to give some idea of how well the search for counter
examples works in practice.

4.1 Trace Counter Examples

To illustrate the effectiveness of trace counter examples we first show one par-
ticular example. In Fig. 2 we see an invariant A that was added to the set of
pre-conditions in order to be able to prove another invariant B (i.e. this was the
action taken after a failed proof attempt in category 2, as described in Sect. 2.1).
The original invariant B was easily proved after this addition, however we could
not prove the new invariant A. After several days of failed proof attempts, we
managed to (manually) find a counter example. The counter example was really
intricate, involving four different nodes and a non-trivial sequence of events.
With this unsatisfying experience in fresh memory, we were eager to try the
trace counter example finder on this particular example. The result was very
positive, the counter example was quickly found (in the presented run after 170
tests), and we could quickly verify that it was equivalent to the counter example



Y Pid, Pid2, Pid3.(( Whenever a process (Pid) is

((Pid € alive) alive, in the first election phase

A elem(m_Down(Pid2), (elec-1) and it receives a Down-

queue(host (Pid))) message such that Pid has received

A (lesser(host(Pid)) C Down-messages from everyone with

(down[host(Pid)] U {host(Pid2)}))  higher priority (that is the hosts in

A (statusfhost(Pid)] = elec_1)) the set lesser (host (Pid))). Then

— —((pendack[host (Pid3)] > host(Pid)) no other process (here Pid3) is

A (Pid3 € alive) alive, in the second election phase

A (status[host(Pid3)] = elec_2)) and having communicated with

) Pid (i.e. having a pendack value
) larger than host(Pid)).

Fig. 2. A broken invariant

**xx Failed! Falsifiable (after 170 tests and 30 shrinks):
Path 4 [AcStart 2,AcStart 3,AcCrash 2,AcStart 1,AcCrash 1,
AcOnMsg 3 AcDown,AcStart 2,AcOnMsg 3 AcDown,AcStart 1,AcCrash 1]

Fig. 3. Trace counter example

that we found manually. The result of the QuickCheck run on this example is
presented in Fig. 3.

The counter example consists of a Path value. From this value we can con-
clude that the counter example involves four processes. We can also see the
sequence of operations leading to a state where the invariant is falsified. This
sequence contains five process starts (AcStart), three process crashes (AcCrash)
and two receives of Down-messages by process number 3 (AcOnMsg). It is inter-
esting to see that the fourth process is never started, and never actually does
anything, nevertheless it must be present in order to falsify the invariant (or else
the shrinking would have removed it).

Evaluation of Trace Counter Examples Although the verification process
was complicated, we did not have very many badly specified invariants around
to test with. The presented example was the most complicated and in total we
had some five or six real 'broken’ invariants to test with. (All of them produced
a counter example.) To further evaluate the trace counter example search in a
more structural way, we used a simplistic kind of mutation testing. We took each
invariant and negated (or if it was already negated, removed the negation) all
sub-expressions occurring on the left hand side of an implication. Thereafter we
tried the trace counter example search for each of the mutated invariants.

In total we generated 272 mutated invariants. We tried to find a trace counter
example for each, and succeeded in 187 cases (where we randomly generated 300
test cases for each invariant). However, we should not expect to find a trace
counter example in all cases, since some of the mutated invariants are still true



invariants. Manual inspection of 10 of the 85 (272 — 187 = 85) failed cases
revealed only two cases where we should expect to find a counter example. (A
re-run of the two examples with a limit of 1000 generated tests was run, and a
counter example was found in both cases.)

4.2 Induction Step Counter Examples

To illustrate how the inductive step counter examples could be used we use
the invariant presented below as an example. This invariant was actually the
last invariant that was added in order to complete the proof of the leader elec-
tion algorithm. The invariant specifies a characteristic of the acknowledgement
messages sent during election.

VPid, Pid2, Pid3.(
(((Pid2 # Pid3)
A elem(m_Ack(Pid, Pid2),
queue(host(Pid)))
A (host(Pid2) = host(Pid3)))
— —elem(m_Ack(Pid, Pid3),

If Pid2 and Pid3 are two differ-
ent processes at the same host, and
an Ack-message from Pid2 to Pid
is in Pid’s queue, then there can
not also be an Ack-message in the
queue of Pid sent by Pid3 to Pid.

queue(host(Pid)))

Fig. 4. Invariant for step counter example example

The first proof attempt included invariants 3, 14 and 15 (which are also
invariants that specify properties about Ack-messages), i.e. we tried to prove
(Invs A Invig A Invis A Invgg) — [Sys] Invsg. This proof attempt fails, and if
we search for an induction step counter example we get the following state:

State with 2 processes:
* Alive: {(2,3),(2,5)}

* Pids: {(2,3)}
[ Process: (1,2)
Status: norm Elid: (2,3) Ldr: 1 Pendack: 2
Queue: [Ack (1,2) (2,3)]
Acks: {} Down: {3},
Process: (2,3)
Status: wait Elid: (1,2) Ldr: 2 Pendack: 2
Queue: [Halt (1,2)]
Acks: {} Down: {}]

The system state consists of two sets alive (that contains the process identi-
fiers of all processes currently alive) and pids (that contains all process identifiers
ever used). A process identifier is implemented as a pair of integers. Furthermore,
the individual state of each process is also part of the system state. Each process



state has a number of algorithm-specific variables (Status, E1id, etc.), and an
incoming message queue.

In the counter example we see that the second process has a Halt-message
from the first process in its queue at the same time as there is an Ack-message
in the queue of the first process. That means that in the next step the second
process could acknowledge the Halt-message, and thus create a state in which
the invariant is falsified. Indeed such a situation can not occur, and we actually
already had an invariant (with number 84) which stated exactly this. Therefore,
if we instead try to prove: (Invs A Invig A Invis A Invgy A Invgg) — [Sys] Invsg
we are successful.

Evaluation of Step Counter Examples In the verification of the leader
election algorithm we used 89 sub-invariants which were proved according to the
scheme

(Invy A Invg A - -+ A Invg) — [Sys] Invy

Since the automated theorem provers are rather sensitive to the problem size,
we put some effort into creating minimal left hand sides of the implication. That
is, we removed the sub-invariants that were not needed to prove a particular
sub-invariant.

Therefore, a simple way to generate evaluation tests for the step counter
example search is to remove yet another sub invariant from the left hand side
and thus get a problem which in most cases (the minimization was not totally
accurate) is too weak to be proved in the step case. Thus, we generate a set of
problems like

(Invy A Invg A -+~ Invg—1 A Invggq A -+ A Inv,) — [Sys] Invy

and evaluate the step counter example search on this set of problems.

In this way, the 89 proof obligations were turned into 351 problems to test
the step counter example search with. More careful analysis revealed that 30 of
the problems were actually still provable, thus leaving 321 test cases. The result
of running the step counter example search in QuickCheck with 500 test cases
for each problem, and a varying number of adapt rounds, is presented in Fig. 5.

In the figure we see that with only one iteration of adapt we find a counter
example for around 75% of the tested problems. By increasing the number adapt
rounds, we find a counter example for 97% of the tested problems within 500
test cases.

In reality, case-splitting [8] turned these 321 into 1362 smaller problems of
which 524 are provable. The results of running the step counter example search
in QuickCheck for each of these smaller problems are presented in Fig. 6. The
results are quite similar to the results in the earlier figure.

Our conclusion is that this way of finding counter examples is remarkably ef-
fective, especially keeping in mind that the counter example search we presented
is a fully automatic and a very cheap method. Running QuickCheck for a failed
proof attempt takes only from a few seconds, sometimes up to a few minutes.
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Fig. 5. Step counter example results

Another important aspect is the quality of the counter examples; i.e. given an
induction step counter example, how hard is it to figure out how to strengthen
the invariant to make it provable. Of course this is hard to measure, and any
judgement here is highly subjective. We randomly selected some of the found
counter examples and inspected them more carefully. In most cases it was easy
to find out which sub-invariant to add, which was the original purpose of the
method.

Interestingly, in some examples, the counter example indicated that a certain
sub-invariant was missing, which was different from the sub-invariant we had
removed. (Remember, we generated the tests by removing one sub-invariant
from already proved examples.) It turned out that we could actually prove the
problem by either using the removed sub-invariant or the sub-invariant suggested
by the counter example. For example: from the (already proved) problem (InwvsA
InvzAInvg) — [Sys]Invs we removed Invy. This resulted in a counter example,
which indicated that adding Inv, would probably make it possible to prove the
sub-invariant. Indeed the problem (Invy A Inv; A Invg) — [Sys] Invs could be
proved. The reason for this is that Inv, and Invs were partially overlapping.
The conclusion must nevertheless be that an induction step counter example is
most often very useful.
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5 Discussion and Conclusion

We have identified different categories of reasons why proof attempts that es-
tablish inductive invariants may fail, and developed a method that can identify
2 of these categories by giving feedback in terms of a concrete counter example.

We would like to argue that the results show that this is a useful method;
very often counter examples are found when they should be found, and they are
easy to understand because of the (local) minimality. The method is also very
cheap, once the system is set up, it does not take much time or resources to run
300 random tests. Every time we make changes to the set of invariants, a quick
check can be done to make sure no obvious mistakes have been made.

For related work, just like pure first-order logic theorem provers, interactive
theorem proving systems usually do not provide feedback in terms of a counter
example either. ACL2 [15] provides feedback by producing a log of the failed
proof attempt. While sometimes useful, we would like to argue that feedback in
terms of counter examples (and in terms of different kinds of counter examples)
is more directly useful for a user. In some work in the context of rippling [17],
a failed proof attempt is structurally used to come up with an invariant for
while-loops in imperative programs.

The interactive higher-order logic reasoning system Isabelle comes with a ver-
sion of QuickCheck [6]. However, there is no control over generators or shrinking



present in this version. The work presented here can possibly be integrated with
Isabelle by extending their QuickCheck with the necessary features.

Some might argue that the main problems presented in the paper disappear
when moving to a reasoning system that supports induction, for example ACL2
or a higher-order theorem prover. However, in such systems it is still useful to
have a notion of different reasons why inductive proofs fail, and the three types
of counter examples (1), (2) and (3) are just as useful in such systems.

For future work, we are looking to further reduce the gap between problems
where proofs are found and problems where counter examples are found. We are
currently working to augment a theorem prover to also give us feedback that can
be used to identify categories (3) and (4). For category (3), an approximation of
a non-standard counter model is produced, for category (4), the theorem prover
can tell why it has not found a proof yet.

Moreover, we want to study liveness more closely, and integrate liveness
checking (and finding counter examples) in the overall verification method.

Finally, to increase the applicability of our work, we would like to separate
out the different parts of our current system; the counter example finding from
the Erlang-specific things, and the leader-election-specific axioms and invariants
from the general Erlang axioms.
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