
Testing Implementations of Formally Verified Algorithms

Thomas Arts
IT University of Göteborg, Box 8718, 402 75

Göteborg, Sweden

thomas.arts@ituniv.se

Koen Claessen
John Hughes

Hans Svensson
Dept. of Computing Science

Chalmers University of Technology
Göteborg, Sweden

{koen,rjmh,hanssv}@cs.chalmers.se

ABSTRACT
Algorithms described in literature can often be used to solve
practical, industrial problems. In safety-critical industrial
settings, algorithms that have been formally verified should
be even more attractive candidates for implementations. Ne-
vertheless, we observe little transfer of algorithms from re-
search papers into products. In this paper we describe a case
study on the implementation of algorithms for the widely
known and broadly studied problem of leader election. De-
spite thousands of articles on that topic, it still requires
a lot of engineering to select the relevant articles, and get
a correct algorithm implemented in an industrial setting.
Modifications are necessary to meet all requirements. We
propose adaptation and testing of formal properties as a re-
alistic and cheap way to check the correctness of the modi-
fications, since performing a formal proof seems unrealistic
for industrial systems. We show how we use the properties
stated in the articles to guide our tests.

1. INTRODUCTION
For the majority of algorithmic problems that arise in prac-
tical software development today, there exist books and pa-
pers describing possible solutions. However, for a software
engineer, it is often a non-trivial task to first find the right
source of information, and then adapt the described solu-
tion to the specific setting at hand. Many software errors
are made because (1) the wrong algorithms were chosen, or
(2) the right algorithms were adapted in the wrong way.

In this paper, we describe a case study where we develop a
fault-tolerant leader election implementation. Leader elec-
tion occurs frequently in distributed systems, when a num-
ber of processes quickly need to agree on who is the one
deemed leader among them.

Getting distributed applications correctly implemented is a
well-known problem, partly because of the non-deterministic
behaviour. Even the design of simple looking distributed

Software Engineering Research and Practice 2005Väster̊as, Sweden

algorithms may give rise to the introduction of tricky faults,
e.g. due to messages that arrive in a different order than
expected. In addition to a collection of implementations of
distributed algorithms in libraries, there is ample literature
describing all kind of such algorithms. In many industrial
cases, there is a need for the kind of algorithms described in
literature.

The leader election algorithm on which we concentrate in
this paper is needed as a component in telecommunication
switching software. The leader election problem is a well-
known and a well-studied problem. A literature search for
algorithms leads to an extensive list of results. For example,
Google Scholar [12] returns over 500 articles on the topic.
With the use of CiteSeer [7] one can identify the most cited
articles, which might be the starting point for reading. For
safety-critical applications, such as in our case, a software
engineer may even require a formally verified version of the
demanded algorithm. Thus, an obvious possibility for a soft-
ware engineer is searching the web for a paper describing
exactly the algorithm with all properties necessary for a spe-
cific application.

The task is now to find an algorithm that fits all require-
ments prescribed by the application. If this algorithm has
been formally verified, it seems to be a cheap way of using
formal methods in the development process! However, it is
almost never the case that such a perfect match is found.
There are two main problems: (1) The assumptions on the
semantics of the environment of the given algorithm are of-
ten incompatible with the assumptions on the development
platform, e.g., certain assumptions seem either impossible
to fulfill in a realistic setting, or they simply mismatch the
actual setting. (2) Often extra features, such as exception
handling cases, have to be added to the given algorithm,
thus modifying the original algorithm and creating a differ-
ent one.

Nevertheless, even if none of the available algorithms fits the
requirements exactly, one can probably still benefit from the
fact that formally verified versions exist. These versions may
form a source of inspiration to develop a new version, where
the properties proved for the algorithm indicate properties
one would like to see satisfied for the modified version as
well. A big disadvantage of such home-cooked algorithms
is that, given the complexity of the problem, the risk for
making a slip is relatively large, while at the same time the
software developer is lured into thinking that the algorithm

at hand has been formally verified. Providing a new math-
ematical proof or even formally verifying the home-cooked
algorithm is considered an unreasonably difficult task, even
if the proofs of the original algorithm are available. There-
fore a method to more easily check the implementation is
needed.

We would like engineers to benefit from existing formal ver-
ification attempts to verify their algorithm. The simplest
form of using the accumulated knowledge in the area, is to
copy (and possibly adapt) the properties presented in dif-
ferent articles and to check in some way if they hold for the
home-cooked algorithm. Therewith, a lot of effort in formu-
lating meaningful and correct mathematical properties can
be reused.

We argue that it is vital that some kind of connection is
established between the actual implementation and the for-
mal properties of such papers. It is important that (1) this
connection is established in a relatively cheap way (so that
it is doable by software engineers), and (2) this connection
targets the actual code, not a high-level abstract descrip-
tion of the code (so that we avoid errors in implementation
details).

We propose in this paper that testing is a practical way of
doing this, fitting well into daily practice in industry. We
propose two concrete testing methods that fit well with de-
veloping formally verified distributed applications. The pro-
posed test methods are property based, or rather property
oriented, which make them especially suited since we want
to benefit from (adapted) existing properties.

In the rest of the paper we describe a case study, where
a leader election algorithm is developed for an industrial
telecommunication switch. Certain components of the sys-
tem, such as a resource manager, have actually been for-
mally verified [2]. The leader election component was deem-
ed too complex to be formally verified from scratch. There-
fore, a version was developed based upon a leader election
algorithm that was developed and proved correct by Singh
[16]. This new version was released as open source [22] and
later adopted by industry.

In Sect. 2 we present some details about the programming
language we use for our implementations and two test tools
that we used. Detailed understanding of the language and
tools used is not necessary for reading the paper; the method
holds in a more general setting. However, certain details
must be presented for reproducibility and deeper under-
standing of some issues. In Sect. 3 we present an overview
of the methodology ussd in the case study. In Sect. 4 we de-
scribe the problems encountered when searching for a suit-
able algorithm. In Sect. 5 we focus on the challenges one
meets when implementing a given algorithm in a context
different from the intention of the creators of the algorithm.
We describe two implementations of algorithms in more de-
tail. The first is the previously mentioned algorithm based
on Singh’s algorithm [16], which turned out to contain an
error. (Note that the error is introduced by the modifica-
tions and does not exist in the original algorithm) Unable
to correct the error, we based our new implemention on a
paper by Stoller [17].

In Sect. 6 we describe how we test properties of the im-
plementations, which is how we found the error in the first
implementation. The properties are inspired by properties
presented in the articles describing the algorithms and by
properties used in other formally verified versions of similar
algorithms. We conclude in Sect. 7.

Contributions With the case study described in this
article we have shown the difficulty in (and also the neces-
sity of) adapting formally verified algorithms to a realistic
setting. We demonstrate how such an implementation, even
when the original algorithm is modified, can be tested by us-
ing properties from the formally verified algorithm. As such,
we have proposed a method of reusing theoretical results in
the area of formal verification in an industrial setting.

2. LANGUAGE AND TOOLS
In this section we briefly summarize important character-
istics of the language and the test tools we use. A lot of
these issues are not very language-specific and may easily
be transferred to a different context.

2.1 Erlang
Erlang [1] is a functional programming language developed
at Ericsson, and especially suited for implementing distri-
buted control systems. It consists of a functional core to-
gether with additional constructs, such as process creation,
message passing and code replacement. Most software writ-
ten in Erlang is running in distributed environments and is
highly concurrent and dynamic in nature. In Erlang termi-
nology, a distributed system consists of nodes, e.g. worksta-
tions, which commumicate over a network. Each node can
contain multiple light-weight processes that all have their
own part of memory. Processes use asynchronous message
passing which is implemented with a per-process mailbox,
which is always ready to receive messages. A process can
use a powerful pattern matching syntax to retrieve messages
from its mailbox.

The language supports process linking, which means that a
process A can obtain a link on a process B. If process B fails,
the linked process A gets a message informing it about B’s
failure. Implemented on top of the linking construct, is the
concept of a monitor, which provides reliable ways to mon-
itor vital processes. By creating a hierarchy of supervising
processes, failing processes may be restarted. By restarting
a process, most faults of subsystems never lead to failure of
the system; they at most either slow down the system, make
the system more deterministic than intended, or reduce the
functionality of the system.

Another feature of Erlang is that it supports tracing of
events, i.e. every process can be instructed to implicitly
send an event message to a collecting process before exe-
cuting a specified function. In Erlang all possible computa-
tions and all message handling consists of calls to functions.
Therefore we can define whatever detailed action that we
like to be an event and to have that event generated when
running our application. The only two shortcomings in this
are that (1) it takes a few milliseconds to switch on event
generation, such that certain events may have taken place
before we start recording, and (2) the scheduling behaviour

of the application is affected. The timing behaviour is af-
fected a little as well, although there is almost no overhead
in tracing events. Timing, though, is not a critical part of
the algorithms considered in this paper.

2.2 Traces, abstractions and analysis
The built-in trace functionality in Erlang is a very useful
tool when testing an implementation. However, the raw
trace data has a tendency to get very verbose, containing
lots of events and also a lot of data per event. Manual in-
spection of traces is therefore often both tedious and time
consuming, and alternative approaches has been proposed.
In [5], one approach is presented where abstraction functions
are applied to state based trace data, in order to remove un-
necessary data and reduce the state space. The state space
is reduced since different concrete states are reduced to the
same abstract state when the abstraction function is ap-
plied. While collapsing different concrete states to the same
abstract state, cyclic behaviors can be detected. The ab-
stract state space is also visualized, something that gives a
good intuition about the inner workings of an implementa-
tion.

This abstract trace approach is taken even further in [4],
where we demonstrate the effectiveness of the method by
testing the first leader election implementation [22] based on
Singh’s algorithm. We discovered two errors in this imple-
mentation, which led to the development of the second im-
plementation based on Stoller’s algorithm. In [4] we also in-
troduce a small language for constructing abstraction func-
tions, as well as checking LTL-properties for the abstract
state space.

2.3 QuickCheck
QuickCheck is a property-based tool for random testing. De-
velopers write properties in a restricted logic as a part of
the program under test, then invoke QuickCheck to test the
property in a large number of cases. Properties can check
conditions using Erlang code, quantify over sets, and express
preconditions. For example, the property

?FORALL(N,int(),

?FORALL(L,list(int()),

?IMPLIES(ordered(L),

ordered(insert(N,L))))).

specifies that the result of inserting an integer into an or-
dered list is itself an ordered list (provided insert and orde-

red are defined in Erlang appropriately). Here, FORALL and
IMPLIES are examples of logic operators provided by the
QuickCheck library. QuickCheck generates test cases ac-
cording to the stated types and preconditions, and checks
that the condition is true in each one. QuickCheck thus al-
lows the developer to focus on the properties that the code
should satisfy, rather than on the selection of individual test
cases. QuickCheck is implemented entirely as an Erlang API
and associated macros, so properties can be compiled and
run by the same tools as any other Erlang program.

QuickCheck tests concurrent programs by collecting a trace
of events, which should have the properties the developer
specifies. The events are defined by instrumenting the code
under test with calls to the QuickCheck function EVENT.

QuickCheck delays these calls randomly, thus in effect over-
riding the Erlang scheduler, and forcing a random schedule
on the code under test. This can elicit faulty behaviour that
would appear only very rarely with the normal scheduler, or
perhaps only in a distributed setting.

A limitation of the version we used is that it only delays
the processes under test, it does not delay the messages in
transit. This will turn out to be important later.

3. METHODOLOGY
In this section we give a summary of the methodology used
in the case study. The different tasks are further described
in Sections 3-6.

1 - Identifying the problem
The first step is to realize that the solution to a given prob-
lem could be found by using a pre-existing (formally verified)
algorithm. This step requires some intuition of what kind
of algorithms exist, and in which situations one could bene-
fit from an existing algorithm as opposed to implement the
algorithm from scratch.

2 - Looking for candidate algorithms
The next phase is searching the literature and other re-
sources for candidate algorithms. Before looking into the
literature, it is good to (loosely) specify what the require-
ments are. Thereby many algorithms which are not suitable
can be discarded at an early stage.

3 - Choosing an algorithm
Having identified some candidates, one should look in more
detail to see which of the candidates that is best suits the
requirements. This is a critical step, since it is often not
obvious how well the algorithm fits into the implementation
language semantics. A good choice here is an algorithm
that fits well into the given requirements, and where the
assumptions in the algorithm description match the given
setting.

4 - Identify needed adaptations
It is not likely that one finds a perfectly matching algorithm
for the given problem, since feature sets and environment
assumptions can vary greatly. If adaptations are necessary,
and we argue that that is almost always the case, these
should be identified and thought through. Hopefully, with
a good choice in step 3, the adaptations should not be too
profound.

5 - Implementation
The implementation of the algorithm (and the adaptations)
should be quite straightforward if one has managed to select
a good algorithm for implementation.

6 - Finding and testing properties
Thorough testing of the implementation is crucial, since the
fact that the underlying algorithm is correct often give the
implementor false security that this also holds for the imple-
mentation. We propose that one uses property-based test-
ing, and that it should be possible to re-use properties from

an existing verification of the algorithm. The biggest prob-
lem with a testing technology is to know when one has tested
’enough’, and an adequate coverage criteria is necessary.

4. IDENTIFYING A SOLUTION
In order to successfully identify a possibly exisiting solution
to a design problem, a software engineer is required to be
able to describe the problem in such a way that it can be
matched to solutions she is aware of. This in turn requires
education and experience.

For example, in our case, the software architect was con-
fronted with the following specific problem:

Among four to sixteen workstations (depending
on the configuration), one workstation needs to
quickly be appointed to handle some administra-
tive tasks for all workstations. From an efficiency
point of view, there is one particular workstation
that is preferred, but in case any other work-
station starts earlier, it can perform the desig-
nated tasks as well. In case of a failure of the
appointed workstation performing the adminis-
trative tasks, a different workstation has to be
re-selected among the remaining ones.

In our specific case, the architect was aware of standard
algorithms in the field and quickly saw the applicability of
what in the literature is called a leader election algorithm or
leader election protocol. The next step in the process seems
to be to find a concrete description of such an algorithm.
There are classical course books on distributed algorithms
[15, 18]. They systematically describe several leader election
algorithms in different contexts (synchronous ring, general
synchronous networks, etc). A quick study of these does,
however, not satisfy our specific needs.

There exist several algorithm repositories on the web (e.g.,
Intelligence United [20], the NIST Dictionary of Algorithms
and Data Structures [19], and the Stony Brook Algorithm
Repository [21]). Unfortunately, none of the searched repos-
itories contained a leader election algorithm. Searching Goo-
gle Scholar [12] for ”leader election” algorithm and ”leader
election” protocol both give a more than 10,000 hits. The
query ”leader election” on its own results in almost 90,000
hits.

The situation we are dealing with is a configuration of a
number of workstations connected via an ethernet network,
running TCP/IP as communication medium. At any point
in time, it is possible that one of the workstations stops
working, in which case a new leader should be elected. Many
articles solve the leader election problem for a different net-
work topology than ours (mostly ring topologies). None of
these is likely to contain a correct solution for our situation.
Of course, one could implement a virtual ring on top of a
fully connected network, but the ring structure is broken
as soon as one of the workstations fails. Many articles also
assume that none of the nodes ever fail, and are therefore
discarded.

Adding additional keywords ”fault tolerant” and ”fully con-
nected”, learned by the insight that reading a few articles
give, reduces the number of hits to about 50. In theory it is
doable to quickly judge all of these on their usefulness.

In the end, none of the articles we studied really fit. Some as-
sumptions seem harmless, e.g., “Processors are anonymous,
they do not have identities” [10], since these assumptions ap-
pear stronger than what actually need to be assured. Other
assumptions may be simulated, like assuming that all pro-
cessors work on the same memory, but that requires a change
in the algorithm. Yet other assumptions are very hard to
fulfill, e.g., “For ease of presentation, we regard each proces-
sor as a CPU whose program is composed of atomic steps.
An atomic step of a processor consists of an internal com-
putation followed by a terminating action. The terminating
actions are read, write and coin toss. . . . Processor activ-
ity is managed by a scheduler. In any given configuration,
the scheduler activates a single processor which executes a
single atomic step. To ensure correctness of the protocols,
we regard the scheduler as an adversary.” [10]. This means
that on the one hand, the scheduler is an adversary, mean-
ing that every possible scheduling of events in considered,
and on the other hand, there are atomic actions that the
scheduler cannot interrupt. This works fine in certain (the-
oretical) settings, but in our case we deal with workstations
that are running independently without a scheduler stopping
them after they have sent a message.

Apart from knowing what to look for, a very good under-
standing of the semantics of the development platform turns
out to be a necessity in the selection of candidate solutions.
Therefore, the search task should be carried out by expe-
rienced programmers with awareness of the overall system
requirements.

Well aware of the fact that relevant articles might have been
overlooked, the first implementation was inspired by Singh’s
“Leader election in the presence of link failure” [16] and
the second implementation was inspired by Stoller’s “Leader
election in asynchronous distributed systems” [17].

5. BRIDGING SEMANTICS
In this section we describe in detail some of the semantic
assumptions posed by the algorithms of Singh and Stoller.
We explain the difference between these assumptions and
the situation we have at hand with our Erlang environment.
In order to be able to use the algorithms in the demanded
environment, some changes have to be made. We discuss
these changes and show how easy they can lead to faults.

In general, there are many semantic assumptions that have
to be carefully considered when implementing a distributed
algorithm in a real environment. What does the environ-
ment require and what is offered by the algorithm? The
following is an incomplete but illustrative list of such is-
sues: Handling failure of the system during execution, us-
ing message passing or shared memory, connection failures
during operation, having connections that break and are
re-established, different network topologies, synchronous vs.
asynchronous communication. It is also the case that a typ-
ical implementation environment have too many features to
be adequately described in an article about an algorithm.

5.1 First algorithm
In Singh’s algorithm [16] the participating processes behave
as follows. When the protocol is started each process is
given a list of all the participating processes; the position in
this list is also the priority order for the processes. A pro-
cess always plays one of the following four roles: candidate,
captured, surrendered or elected. When a process is started
it is always a candidate to become a leader. First the candi-
date tries to capture all the other processes, by broadcast-
ing a ‘capture’-message. If a candidate receives a ‘capture’-
message, it reacts based on the priority; it will silently accept
messages from processes with lower priority, and reply by
sending an ‘accept’-message to processes with higher prior-
ity. After accepting, the candidate changes its role to being
captured. A captured process will ignore ‘capture’-messages
and forward ‘accept’-messages to the process that has cap-
tured it. Whenever a candidate has captured more than
half of the participating processes, it will announce itself as
the leader by broadcasting an ‘elect’-message. If a process
receives an ‘elect’-message it will immediately surrender.

The following assumptions about the problem are stated:
“In the paper, we study the problem of leader election in the
presence of link failures. In the problem of leader election,
there are N processors in the network, each having a unique
identity. Initially all nodes are passive. An arbitrary sub-
set of nodes, called the candidates, wake up spontaneously
and start the protocol. On the termination of the protocol,
exactly one node announces itself the leader. We consider
the problem of electing a leader in an asynchronous com-
plete network. In a complete network, each pair of nodes is
connected by a bidirectional link and we assume that a node
is initially unaware of the identity of any other node. By
electing a leader, one can execute centralized protocols in a
distributed system.” This summarizes exactly what we need,
apart from the fact that we want a re-election if the leader
fails. The stated algorithm simply halts when a leader is
elected. What is surprising is the remark “Although com-
plete networks are not practical, they have been widely used
for theoretical studies. They provide a lower bound for more
practical networks (which have less connectivity)”, since we
consider Ethernet networks with TCP/IP as rather practi-
cal. Careful reading reveals a misunderstanding from the
implementors side; complete networks really means a cable
from each node to each other node. The algorithm in the
paper had to be adapted in several ways to fit our setting.
Firstly, we want a re-election to occur whenever the current
leader dies. In the modified implementation, all surrendered
processes restart the protocol as soon as they detect failure
of the leader. Secondly, for optimization purposes, we im-
plement detection of dead nodes. A process is announced
leader if it captures at least half the nodes that are alive.
Thirdly, the bidirectional link is implemented by an Ether-
net network, each workstation can communicate with each
other workstation. Thus, we believe to meet the complete
network requirement. In that setting, nodes do know each
other’s identity from the beginning (e.g. IP number), but
that can hardly be a hindrance.

Singh’s algorithm described assumes that failures occur in
the communication links, not in the nodes. The fault-tolera-
nce of the algorithm is expressed “given N nodes, N2/4 −
N/2 links may fail”. In our setting, the algorithm is used in

a situation where all nodes can communicate with all other
nodes in a network that contains no failures. After realiz-
ing this, we should probably have discarded the algorithm.
However, the interpretation was made that if a node dies,
N − 1 links fail (i.e, all links from that node to any other
node). Given 6 nodes or more, one node failure causes at
most the allowed number of link failures and such failure is
therefore assumed to be recoverable.

The modified algorithm was implemented and manually test-
ed by observing screen outputs notifying which node be-
came the leader and thereafter manually killing one node
randomly. These tests showed that there is a leader elected
after a few milliseconds and killing the leader results auto-
matically in a new leader election and a stable situation in
which another leader is selected. Therefore, the algorithm
was released.

A later, more intensive analysis of the implementation, iden-
tified two errors further described in [4]. Both were the re-
sult of incorrect modifications to the original algorithm. The
first error made it possible for two leaders to exist simulta-
neously and was caused by the addition of the possibility to
elect a leader with less than half of the nodes being alive.
The second error was that a deadlock situation occured af-
ter the election process was restarted due to the failure of
the leader.

In Singh’s algorithm these problems are absent, since re-
starting the election process is not considered, and the rules
for electing a leader are more restrictive.

5.2 Second algorithm
Directly after implementing Singh’s algorithm (with home-
cooked modifications) a new search for leader election algo-
rithms was performed in order to document the source of
Singh’s algorithm. Coincidentally, Stoller’s algorithm was
discovered [17] and reviewed to be a good alternative to
Singh’s algorithm. After identifying the errors in the mod-
ified version of Singh’s algorithm, it was decided to imple-
ment Stoller’s algorithm, instead of trying to further modify
the algorithm with the risk of introducing different errors.

In Stoller’s algorithm the participating processes behave as
follows. When a process is started, it first checks whether
any process with higher priority is alive. If there is, it waits
for one of these processes to become leader. If not, the
process itself decides to try to become leader. It then checks
that all other processes of lower priority either are aware of
its existence, or are dead. If so, it announces itself as leader.

Stoller states the following assumptions: “The system com-
prises a fixed set of nodes and a communication network.
Nodes may crash and recover; other types of failure are as-
sumed not to occur.” This is expressed in very general terms,
but seems to meet our requirements nicely. The assumptions
continue with: “Each node has access to a small amount of
stable storage (i.e., storage whose contents survives crashes).
Nodes communicate by sending messages. Communication
is FIFO. For synchronous systems, we assume also that
communication is reliable.” The stable storage part can be
a bit troublesome in embedded systems, but we may use a
local disk.

The communication statement is very vague. We interpret
synchronous systems as systems that communicate with syn-
chronous message passing. It is far from obvious what is
meant by FIFO communication. Here we assume that every
process has a message queue which is FIFO. We also assume
that the synchronous communication is synchronization be-
tween sending process and message queue of the receiving
process. This is concluded from studying the algorithm and
excluding other possible interpretations. Luckily, the as-
sumption fits the Erlang semantics well. In our setting, the
communication is reliable so these requirements could be
met.

There are actually two different algorithms described in the
paper, one algorithm with synchronous message passing and
one with asynchronous message passing. What is perhaps
most surprising, and at the same time shows how difficult
it is to select a good candidate algorithm for implementa-
tion, is that we chose the synchronous algorithm! Erlang
is a functional language with asynchronous communication,
and therefore it would be reasonable to choose the asyn-
chronous algorithm. A more careful reading of the article
reveals that the difference between the synchronous and the
asynchronous algorithm lies mostly in how the failure detec-
tion works (how node failures are detected and reported),
and here the Erlang monitor works in the same way as the
failure detection with synchronous message passing. It is
also the case that the asynchronous message passing in Er-
lang could be regarded as rather synchronous in the way
the underlying mailboxes are implemented. Messages more
or less synchronize with the mailbox of the receiving party.
This shows how important it is to have a thorough under-
standing of the inner workings of one’s implementation lan-
guage.

Contrary to the demand that the node that is ahead in the
startup process should become the leader, it is stated that
“The basic idea in the Bully Algorithm is that the operational
node with the highest priority becomes the leader.” This is
actually not what we want, if a node with lower priority
became the leader, this node should remain the leader even
if a node with higher priority is (re-)started. So yet again
we have the situation where we need to make changes to
the algorithm as to match the specific requirements of the
intended usage. Therefore, one may wonder whether we can
trust the modified Stoller algorithm.

6. TESTING IMPLEMENTATIONS OF AL-
GORITHMS

In the previous section, we show that few algorithms di-
rectly fit the requirements of a particular application. Even
in the cases where they do, we often use an underlying pro-
gramming language which differs from the pseudo-code in
which the algorithm is written. Therefore, it is important
to create a strong connection between the model of the al-
gorithm presented in the paper and the code of the actual
implementation.

We argue that thorough testing is the only reasonable way
to establish this connection. The immediate questions then
are: (1) What to test? and (2) How to test it?

What to test
Leader election is a well-known and clearly defined problem,
which means that the requirements are also well defined:
(1) Eventually, a leader should be elected, and (2) At most
one of the participants is considered the leader. Variations
of these properties are also stated in the articles. For a
leader election algorithm, the properties are fairly obvious.
In general, the properties are not always obvious, and most
articles about algorithms state properties that are supposed
to hold. In the property-based testing, we try to adapt these
properties into testable properties.

However, there are significant differences between testing
and formally proving properties. One issue is that eventu-
ality properties, i.e. properties like ‘Eventually a leader is
elected’, must in a testing setting be bound by some maxi-
mum time or maximum number of events. In our case, this
is easily solved, because if no leader is elected within a sec-
ond (an infinity in telecommunication applications), then
the application is not functioning correctly. But in other
situations, it is often far from obvious what a correct value
of such a maximum time is.

Another issue is that the properties stated in the articles
are often global properties, they state something for all pro-
cesses at the same time. For example, in the second imple-
mentation based on Stoller’s article [17] one could only ob-
serve that a leader is elected and accepted by all other nodes
by observing that for each (active) node a certain local vari-
able has the value Norm and a second local variable stores the
identity of the elected leader. Unfortunately, in a distributed
system, global properties are very hard to observe. By the
time you have collected all state information, a few nodes
may have already changed their local values, such that you
never know whether the actual global state had that value
at one time instance. There are many well-known solutions
to the distributed global state detection problem, for exam-
ple a snapshot algorithm [6], global clocks or logical clocks
[14]. The result of such algorithms is not necessarily a true
global state, but rather a global state that could have been.
Using a snapshot algorithm is however not an ideal solution
in our setting, since these algorithms are superimposed on
the underlying computations and will therefore affect the
system under test.

The problem of verifying global properties when you only
have access to local state information is not new. In a
formal verification approach, the same phenomenon occurs.
The events that are visible in the state space typically give
local information about the state of one or two processes.
Properties that depend on information from a collection of
local states are verifiable if one has access to all possible
runs of the program, but these properties are rather hard to
formulate. Verifiers often add an observable action, similar
to printing ‘I am the leader’ to make it easy to formulate
the property (c.f. “Formal verification of a leader election
protocol in process algebra” [11]). In that way one verifies
that one process indeed gets the leader role, but not that
all other processes are recognizing this leader or are aware
of this leader. Additional properties need to ensure that.
We apply the same approach in our testing; by observing
a certain subset of the local state variables, we are able to
distinguish whether a process considers itself the leader.

Apart from the two properties discussed earlier, the articles
we studied have a lot of detailed properties that are specific
for the chosen algorithm. One example is (from Singh’s ar-
ticle [16]): If there exists at least one node in phase l of iter-
ation k then at least one node will enter either phase l+1 of
iteration k or the first phase of iteration k+1. Testing these
more specialized properties as well, as opposed to only test-
ing top-level properties, leads to a more fine-grained testing
scheme, which greatly improves the effectiveness of random
testing [13]. A disadvantage with these algorithm specific
properties is that we can (in general) only use specific prop-
erties from the article we are implementing and not from
other papers presenting similar algorithms. Another disat-
vantage could be that theses more specific properties do not
(and sometimes should not) hold in the modified version of
the algorithm, thus some extra thought is needed. In the
QuickCheck testing described in Sect. 6.2, we also tested
some specialized properties, most of those were invariants of
the type: the number of alive nodes is not greater than the
number of participating nodes.

How to test it
Given that we know what properties we should test for, how
can we now test the implementation? There are two issues
that need to be addressed here. (1) How do we generate
stimuli to the system under test, and (2) How do we check
that the desired properties hold for the runs of the system
we executed?

The “input” to the leader election algorithm is rather simple;
it basically consists of a sequence of events, where an event
either indicates that a particular node has died, or that a
node has revived again. However, testing a distributed sys-
tem by varying just those events is far from sufficient. The
scheduler in Erlang is deterministic and therefore running
the software in a certain configuration results in a relatively
low number of covered execution paths. Therefore, when
performing stimuli, we also would like to influence the be-
haviour of the underlying run-time system. In particular,
while testing, we can arbitrarily vary the behaviour of the
scheduler, and we can arbitrarily delay messages sent from
one process to another. In this way, more execution paths
can be explored.

Below we discuss two different testing approaches, based on
two different concrete testing tools that exist for Erlang.
There are mainly two things that differ between the two
approaches, namely (1) how we control the scheduler and (2)
how properties are checked. The first difference affects the
execution paths explored in the tests, the second difference
affects what kind of properties we can express, and thus
what kind of bugs we can detect.

6.1 Testing with trace collection
In the first tool, described in [4], we stimulate the system
by arbitrarily killing and reviving nodes, and by arbitrarily
delaying messages sent between processes. Moreover, we
use recording of event traces in order to observe faults that
are not manifested in failures. We were able to use this
technique to identify certain errors in the implementation of
the first algorithm. The first error lead to the possibility to
have two leaders existing at the same time. The second error
caused falsification of the eventuality property “Eventually

a leader will be detected”; we could detect a situation where
the system would end up in a deadlocked situation without
a leader.

Using the same trace recording techniques for the implemen-
tation of the second algorithm did not reveal any fault. This
gave us a certain confidence, but we want to increase our
confidence by an additional testing technique. Our concern,
namely, is whether we have tested enough of the possible
runs of the system.

One big advantage with the trace collection testing tech-
nique is that it is detached from the test case generation
technique. In this case study we have used random stimuli.
However, any test case could have been used since the trace
collection is built into the run-time system and not a specific
part of the testing.

6.2 Testing with QuickCheck
In the second tool, QuickCheck, we stimulate the system
again by arbitrarily killing and reviving nodes, but now we
randomly steer the possible execution paths of the processes
by directly influencing the Erlang scheduler. For that rea-
son, QuickCheck has been extended with the option to cre-
ate randomly scheduled executions.

We used QuickCheck to test both the first and the second
implementation of the algorithm. Here, we could reuse the
top-level properties for both implementations. In Figure 1
a fragment of the property file is presented, showing the
property that there are not two leaders present at the same
time. The FORALL construct together with the longtrace

will randomly generate traces, which are passed to a check-
ing function not two leaders which checks the property
for the trace. In general, code like this is written by the
tester/implementer, hopefully with a lot of guidence from
the article. We wrote about 10 such properties during the
tests, most of those applied to both implementations (ex-
cept for a few specific invariants). Note, here election is
the record containing the state information needed to decide
whether a node is the leader or not.

Testing the first implementation
We tested the first implementation using QuickCheck, to
see if we could reveal the same errors as with the trace
recording technique [4]. To this end, we constructed one
(parametrized) function to start the application, and further
instrumented the main loop of the implementation with the
QuickCheck EVENT-construct, which automatically transfers
scheduling control to QuickCheck and generates traces of
the execution. By running QuickCheck with the property:
“Two leaders should not be present simultaneously”, we
were able to observe the same fault as with the trace record-
ing technique.

However, formulating and testing for the second fault, the
deadlock situation, proved to be much harder. As discussed
earlier, the way to detect a deadlock in testing is via a time-
out. However, timeouts are not always necessarily a bad
thing, since a timeout only says that there has not been any
activity in the system during a given time period. So, it
is necessary to specify which timeouts indicate deadlocks,
and which ones do not, something that is hard to do in the

leaderprop() ->

?FORALL(Trace,?longtrace(3,400,traceit:start()),

not_two_leaders(Trace,sets:new()));

% Not two simultaneous leaders

not_two_leaders([],_) ->

true;

not_two_leaders([{event,Pid,E}|Es],Leaders) ->

case Pid == E#election.leader of

true ->

NewLeaders = sets:add_element(Pid,Leaders);

false ->

NewLeaders = Leaders

end,

(sets:size(NewLeaders) < 2) and

not_two_leaders(Es,NewLeaders);

not_two_leaders([{exit,Pid,_}|Es],Leaders) ->

not_two_leaders(Es,sets:del_element(Pid,

Leaders));

not_two_leaders([_|Es],Leaders) ->

not_two_leaders(Es,Leaders).

Figure 1: Fragment of property-file

current QuickCheck version. There is also a second reason
to why we where unable to detect the deadlock error using
QuickCheck. The deadlock depended very much on spe-
cific message timing circumstances; the fault occurs only if
a certain message arrives much earlier than another message.
Since we do not influence the speed of delivery of a message
in this approach, the fault is very unlikely to appear.

Testing the second implementation
Using QuickCheck to test the second implementation, we
could not produce any trace where the properties were vio-
lated. Nevertheless, we could observe some failures, namely
that a leader election process crashed unexpectedly from
time to time. This did not lead to any faulty behaviour, but
it indicated that something was wrong.

Closer analysis revealed a very tricky error, which would
have been extremely unlikely to be found without control of
the scheduling. The problematic situation occurrs whenever
a process A is about to contact another process B. To do this
in a controlled way, process A first request a monitor (a link
mechanism such that a notification is received whenever the
other process fails) on process B before sending the message.
What can occur now is that process B is down when pro-
cess A requests the monitor, but alive just some time later
when process A sends the message. In this case, process A
receive both a failure-notification and a message reply. This
situation was overlooked in the implementation and led to
a crash. Luckily, the error could be easily corrected.

In this example we can see how important it is to have
control of the scheduling, since this situation occurred fre-
quently (like once every 150 tests) while testing with Quick-
Check but could not at all be observed when we tested the
implementation with the trace recording technique.

In this respect, our erroneous implementation followed the

K
il
le

d
n
o
d
e
s

in
e
le

c
t
io

n

a
s

le
a
d
e
r

s
u
r
r
e
n
d
e
r
e
d

QuickCheck 1601 23.6% 6.4% 70.0%
Trace rec. 101 4.0% 10.9% 85.1%

Table 1: Coverage results

algorithm in the paper quite closely. Does this mean that
the same error is present in the article? That is a rather hard
question to answer, since Stoller’s article [17] is not very spe-
cific about the semantic assumptions made regarding link
requests between processes. This yet again shows the dif-
ficulties of bridging the semantics from the article, where
underlying assumptions often hide important and problem-
atic issues, to the implementation language.

6.3 Coverage
When working with test methods, the issue of coverage is
central. Coverage should provide a measure of how exhaus-
tively one has exercised the system, and is therefore impor-
tant when evaluating the results of testing. Though it is very
rare that a coverage measure can tell when we have tested
enough, rather the coverage measure will warn of potential
situations when we have not tested enough.

The simplest form of coverage is code coverage, which mea-
sures whether (or how many times) a certain line of code has
been executed. This measure is rather useless here, since we
cover 100% of the relevant code. Instead it is the compli-
cated interactions of several different instances of the im-
plementation that should be studied. Therefore a better
coverage measure would be how much of the statespace (for
a combination of several processes) we have exercised.

In [4] we discuss some coverage mesaures for the abstract
state space in the trace recording technique. Those measures
are hard to compare with the QuickCheck tests. Instead we
choose to look at how many nodes were killed, and at what
stage in the election process the nodes were killed. Killing
nodes in different stages means exercising different parts of
the statespace, thus only killing nodes at a certain stage
in the election process is not a good idea. We should also
observe that it is possible to affect the size of the testcases,
via the sized functionality in QuickCheck, this is necessary
since the default sized traces are too short. To overcome
this, we created our own longtrace macro which takes a
size factor as parameter.

In Tab. 1 we can see the coverage result (labeled ”Quick-
Check”) for a QuickCheck run with 5 nodes and the long-
trace parameter 10 and as a comparsion results for a run
with the trace recording technique (labeled ”Trace rec”).
The first column shows the total number of killed nodes,
second column the percentage of nodes killed during an
election, third column the percentage of nodes killed when
elected as leader, and fourth column the percentage of nodes
killed when being surrendered to a leader. In the coverage
results we can note a difference between the two techniques,

since we do not influence the scheduler in the trace record-
ing thechnique it is quite rare that we manage to kill a node
in the middle of the election process (merely 4% of the kills)
compared to the QuickCheck approach where this happens
a lot more frequently (almost 25% of the kills).

7. DISCUSSION AND CONCLUSIONS
The problem that we address in this paper is that there in
general exists a big gap between the idealized world where
algorithms are presented and proved correct, and the real
world where the algorithm should work in a concrete envi-
ronment. We do not propose to change this situation, as we
believe that there certainly is value in solving problems in
an idealized setting, and that perfect solutions to realistic
problems are often out of reach. Instead, we try to present a
recipe and guidelines for how to approach a problem in this
setting.

It is often impossible to find an algorithm that exactly mat-
ches the specifications of the situation at hand. However,
as our case study shows, picking the right solution to the
problem at hand is essential. So, selecting the right article
to use seems to require both education and experience from
the software developer.

What we argue is that, when implementing an algorithm
from an article, a software engineer cannot only benefit from
the description of the algorithm itself, but also from the
other information, such as theoretical properties the algo-
rithm should have. We propose a concrete method (and two
concrete tools) to cheaply use this extra information, namely
property-based random testing.

The reuse of this information becomes even more important
when the algorithms are adapted to new settings and aug-
mented with new features, which is almost always the case
in practice.

We identify testing as the main tool for checking whether the
implementation really behaves as intended, and we demon-
strate how one can (re-)use properties that are verified in
the articles. We also discuss what one can expect to find in
an article about an algorithm, and identify several poten-
tial problems when the properties have to be adapted to the
implementation environment.

Model checking [9] could be regarded an alternative to test-
ing. The model used should be closer to an implementation
than a pen-and-paper proof. There are even tools to create
the model from the implementation [2, 3]. Such a model
is (and should be) an abstraction, leaving out some details
that can lead to a defect. This is necessary in order to deal
with the state space size of realistic examples. For example,
we have a fault-tolerant system, which means that it is pos-
sible for any participant to fail at any time. This means that
the resulting state space grows very quickly in the number
of participating processes, limiting the applicability of the
technique. Moreover, the mentioned tools for model check-
ing Erlang programs use an Erlang semantics which only
deals correctly with a single run-time system [8]. Therefore
model checking would limit us to systems with a small num-
ber of participants, and still there is the probability that
errors slip through due to the underspecified semantics. It

is certainly a fact that the real world is too complex to fully
model, and there exist no tool that can handle all the fea-
tures provided by a typical implementation environment.

We have used two different techniques for testing the leader
election implementation. In many ways the testing tech-
niques are very similar; both use (directed) random testing,
and both use traces. What especially differs between the
two methods are (1) how we control the scheduler and (2)
how properties are checked. The first difference affects the
execution paths explored in the tests, the second difference
affects what properties we can express (and so what bugs we
can find). It is important to note that the combination of
these techniques are rather arbitrarily chosen; one could cer-
tainly imagine an approach with abstraction functions and
an influenced scheduler or the other way around. Another
important fact is that although we have limited ourselves
to random testing here, the trace collection technique is not
in any way limited to random testing, on the contrary, any
type of test case generation can be used.

The concrete test results for the two implementations of the
leader election protocol also show that the two test methods
are complementary. We believe this is because most non-
obvious errors manifest themselves in rare schedulings, and
influencing the run-time behaviour in certain ways affects
the likelihood of certain executing paths.

Future work The most important issue is whether the
proposed methodology can be generalised to other algori-
thms. To fully answer this question, many more cases are
needed. However the results so far are positive, and the
overall methodology should be applicable in many cases al-
though the details may vary significantly.

8. REFERENCES
[1] J. Armstrong, M. Williams, C. Wikstrom, and

R. Virding. Concurrent Programming in Erlang.
Prentice-Hall, Englewood Cliffs, New Jersey, USA,
second edition, 1996.

[2] T. Arts, C. Benac Earle, and J. Derrick. Development
of a verified Erlang program for resource locking. Int.
J. on Software Tools for Technology Transfer, 2004. to
appear.

[3] T. Arts, C. Benac Earle, and J. J. Sánchez Penas.
Translating Erlang to mCRL. In Fourth International
Conference on Application of Concurrency to System
Design, Hamilton (Ontario), Canada, June 2004.
IEEE computer society.

[4] T. Arts, K. Claessen, and H. Svensson. Semi-formal
development of a fault-tolerant leader election
protocol in Erlang. In Lecture Notes in Computer
Science, volume Vol. 3395, pages 140 – 154, Feb 2005.

[5] T. Arts and L.-Å. Fredlund. Trace analysis of Erlang
programs. In Proceedings of the 2002 ACM SIGPLAN
workshop on Erlang, pages 16–23. ACM Press, 2002.

[6] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Trans. Comput. Syst., 3(1):63–75, 1985.

[7] Citeseer. http://citeseer.ist.psu.edu/.

[8] K. Claessen and H. Svensson. A semantics for
distributed Erlang. In Proceedings of the 4th ACM
SIGPLAN Erlang Workshop, pages 78 – 87, 2005.

[9] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 2000.

[10] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic
self-stabilizing leader election. IEEE Trans. Parallel
Distrib. Syst., 8(4):424–440, 1997.

[11] L-Å. Fredlund, J.F. Groote, and H. Korver. Formal
verification of a leader elction protocol in process
algebra. Theoretical Computer Science,
177(2):459–486, 1997.

[12] Google scholar. http://scholar.google.com/.

[13] R. Hamlet. Random testing. In J.Marciniak, editor,
Encyclopedia of Software Engineering, pages 970–978.
Wiley, 1994.

[14] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. ACM,
21(7):558–565, 1978.

[15] N. Lynch. Distributed Algorithms. Morgan Kaufmann
Publishers, 1996.

[16] G. Singh. Leader election in the presence of link
failures. In IEEE Transactions on Parallel and
Distributed Systems, Vol 7. IEEE computer society,
1996.

[17] S.D. Stoller. Leader election in distributed systems
with crash failures. Technical Report 481, Computer
Science Dept., Indiana University, May 1997. Revised
July 1997.

[18] G. Tel. Introduction to Distributed Algorithms.
Cambridge University Press, 2000.

[19] Dictionary of algorithms and data structures.
http://www.nist.gov/dads/.

[20] Intelligence united.
http://www.intelligenceunited.com/.

[21] The stony brook algorithm repository.
http://www.cs.sunysb.edu/ algorith/.

[22] U. Wiger. Fault tolerant leader election.
http://www.erlang.org/.

