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Abstract. We present a semi-formal analysis method for fault-tolerant
distributed algorithms written in the distributed functional programming
language Erlang. In this setting, standard model checking techniques are
often too expensive or too limiting, whereas testing techniques often do
not cover enough of the state space.
Our idea is to first run instances of the algorithm on generated stimuli,
thereby creating traces of events and states. Then, using an abstraction
function specified by the user, our tool generates from these traces an
abstract state transition diagram of the system, which can be nicely vi-
sualized and thus greatly helps in debugging the system. Lastly, formal
requirements of the system specified in temporal logic can be checked au-
tomatically to hold for the generated abstract state transition diagram.
Because the state transition diagram is abstract, we know that the checked
requirements hold for a lot more traces than just the traces we actually
ran.
We have applied our method to a commonly used open-source fault-tolerant
leader election algorithm, and discovered two serious bugs. We have also
implemented a new algorithm that does not have these bugs.

1 Introduction

The company Ericsson has developed a telecommunication switch called the AXD
301 [7]. The control software of this switch is written in the distributed functional
programming language Erlang [2]. A major challenge in the development of the
switching software is to get the almost one million lines of code tested in the
relatively short time between releases of the product. A typical time consuming
and difficult activity is testing fault-tolerance properties. The particular fault-
tolerance we investigate here is the effect of taking down parts of a switch (because
of maintenance or hardware problems) and restart them later in time.

We report on our case study to take away part of the testing load by analyzing
a critical part of the code by semi-formal methods. The part we looked at is a
leader election protocol. In the AXD 301, a module of about 2000 lines of code
implements both a leader election protocol and a resource manager. In order to
be able to deal with the complexity of this module, Ericsson’s engineers rewrote
the module in two parts, separating the resource manager and the leader election
protocol. The simplified resource manager has been formally verified in earlier



work by using a model checking approach [3]. The slightly generalized and cleaned
up leader election protocol contains about 800 lines of code and is available as open
source [21].

The leader election problem is a well-known and extensively studied problem.
The objective of the protocol is for the processes among themselves to establish a
designated process, called the leader. Leader election protocols have been designed
for many different settings. In our case, we are interested in a solution that is
fault-tolerant. Fault-tolerance is based on communication links breaking or on
processes that may die or revive again at any point in time. If the currently
elected leader dies or is disconnected, the surviving processes need to elect a new
leader amongst them. However, during the election process, other processes may
cease to work. We consider asynchronous communication with buffered messages.
Among the many articles published on the leader election protocol [9, 6, 16, 17,
1], we know of only few that address all these problems. It was actually hard to
find a paper describing exactly the setting that Erlang uses: asynchronous message
passing, reliable communication channels between every pair of processes, possible
failure and/or revival of a process at any point in time and a reliable notification
mechanism of when processes die.

The algorithm used in the leader election protocol implementation we analyzed
was an adaptation of a previously published algorithm [16]. There is a fixed set
of processes that can die arbitrarily, and they have to negotiate a leader among
them. The first process that comes up has priority to become leader, in order to
have a selected leader as soon as possible. Only when the current leader dies, a
new leader should be elected.

There are two basic properties that the leader election implementation needs
to obey: (1) Safety — it is never the case that there are two or more leaders at
the same time; (2) Liveness — in a stable situation (i.e. processes stop dying for
a while), a leader will eventually be elected.

We have considered using model checking techniques to formally verify these
properties. However, we found that dealing with the fault-tolerance lead to state-
space explosion in the used model checkers, which severely limited the number of
processes we could deal with. More informal methods based on testing seemed to
be necessary.

The Erlang runtime system has built-in support for generating traces of the
events occurring during execution. With simple means, one can specify what one
considers an event (sending a message, receiving a message, a process dying, a
function call, etc.). Tracing can be switched on and off on demand. Studying the
traces reveals not only that an error occurred, but can also demonstrate the chain
of events that lead to the error.

We have developed a methodology for semi-formal analysis of such traces of
distributed systems (c.f. [5]). The idea is to first produce traces of the system by
generating stimuli, as in testing. Then, we build abstractions of the traces with
the help of an abstraction function specified by the user. An abstraction function
basically maps data structures in the events and states to different (simpler) rep-
resentations. An abstraction reduces the number of states, by mapping the actual
concrete states onto a set of abstract states. This also allows us to detect cyclic
behaviour in the trace, since different concrete states can be mapped to the same



abstract state. The accompanying abstract state transition diagram concisely in-
dicates the different abstract states visited during an execution, together with the
messages sent and received during the transitions. A path through such a state
diagram represents a trace, but it is not necessarily the case that the trace is a pos-
sible trace for the system since the diagram is really a diagram for an abstracted
model of the system.

We propose to generate traces of simple instances of the software first, such as
a reduced number of processes or executing only one possible scenario. For these
traces it is easy to define abstraction functions. The same functions can be used
for more complicated instances of the software.

The generated abstractions are used in two ways: (1) They increase under-
standing of the system, and can help to more easily spot the causes of bugs (as
explained in Section 2.4); (2) We can formally verify properties of the abstraction,
thus ensuring that the desired properties not only hold for the generated traces
of the system, but also of all other paths through the abstract state diagram (as
explained in Section 2.7).

When we applied our methodology on the implementation of the leader election
algorithm, we discovered two serious bugs. Failing to correct the bugs in an efficient
way, we also tried to implement a different algorithm for leader election. This
implementation is based on [17] and was tested with the methodology described
in this paper without finding any errors.

2 Methodology

In this section, we describe our methodology in more detail. We do this by con-
cretely following the analysis of a leader election algorithm in chronological order.
We start by describing the original algorithm, how we generate stimuli to obtain
system traces, and how we use abstractions to find bugs. Then, we describe our
own implementation of leader election, where all of our analyses failed to find any
errors, and discuss coverage issues related to our method.

2.1 Fault-Tolerant Leader Election Version 1

The Erlang code for the algorithm we started with is publicly available on the web
[21]. However, for simplification purposes we actually analyze a cut-down version
of this code here. All code we used in this case study is available on the web [18].

The implementation is loosely based on an algorithm described in [16], which
is an algorithm designed for fault-tolerance where faults occur due to failing com-
munication links. Therefore it was necessary to adopt the algorithm to the Erlang
setting, where faults occur mainly due to processes dying.

The participating processes behaves as follows. When the protocol is started
each process is given a list of all the participation processes; the position in this
list is also the priority order for the processes. A process always plays one of the
following four roles: candidate, captured, surrendered or elected. When a process
is started it is always a candidate to become a leader. The first thing it does is
to try to capture all the other processes, by broadcasting a ‘capture’-message. If
another candidate-process receives a ‘capture’-message, the receiving process will



take action based on the priority; it will ignore messages from processes with lower
priority, and accept messages from processes with higher priority by sending an
‘accept’-message. After accepting, the process changes its role to being captured.
A captured process will ignore ‘capture’-messages and forward ‘accept’-messages
to the process that has captured it. Whenever a candidate has captured more
than half of the participating living processes, it will announce itself as the leader
by broadcasting an ‘elect’-message. If a process receives an ‘elect’-message it will
immediately surrender.

Whenever the leader dies (processes discover this since the Erlang runtime
system will send a ‘DOWN’ message to all interested processes), a new election
round is started. Whenever a process revives, this process will be notified of the
(possible) presence of a leader via an ‘elect’-message as a reply from the leader to
the ‘capture’-message sent when the process revived.

When we got the algorithm, it was said that it would always eventually choose
a leader if more than 50% of the processes are alive and if the system is stable for
long enough. (It is though possible that a leader is elected with fewer processes
alive.) The algorithm is not supposed to elect a new leader unless the leader dies.

2.2 Generating Stimuli and Tracing

The Erlang Runtime System (ERTS) has built in functionality for tracing run-
ning processes. The tracing can be switched on or off at any given time, without
interfering with the execution. It is possible to trace sent and received messages,
function calls, process related events, process scheduling and garbage collection. In
a distributed environment there exists functionality for redirecting trace messages
to a central collection process, in order to collect all trace data into the same log
file.

Stimuli for leader election implementation In order to generate traces of
the leader election protocol, a set of nodes is started, and a leader election process
is started on each node. The stimuli for a leader election system is killing and
reviving processes. Therefore, for the purposes of generating stimuli, each node
also runs a controller process that can kill and restart the leader election process.
A simulation process then randomly selects which process to kill/revive by sending
messages to the control processes. How many processes can be dead at the same
time is configured in the simulator process.

In order to further test the robustness of the leader election protocol, we im-
plemented a variant where we also delay messages between nodes in a random
way. The idea is that this simulates slow and/or overloaded connections. Since
the leader election implementation is supposed to be fault-tolerant, it should be
capable of working with slow/overloaded connections. Note that this is not tested
in a standard setting where one runs all nodes on the same hardware, since com-
munication delays will be rather static in such a setting.

Tracing the implementation We first collected trace data for the simplified
version of the leader election protocol, without using message delays. When run-
ning a leader election system with three processes, everything worked fine, but
when running with five processes something was obviously wrong; there were two
processes simultaneously announcing themselves as leader! In the search for this
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Fig. 1. Abstract trace for one process in a three node setting

error, we focused on the trace data for one of the nodes which was elected as
leader. The raw trace data contained roughly 120 states and 200 message events,
a bit too many for easy overview. The problem here is that it is easy to spot where
in the trace the fault happened (two leaders are elected), but not where in the
trace the event happened that triggered the fault (the first illegal state).

2.3 Abstractions

It is clear that in order to understand larger traces of systems, one has to reduce
the information in the trace to a relevant subset of all information. One way of
doing this is by using an abstraction (c.f. [5]). Abstractions are made by applying
an abstraction function that converts each concrete state in the trace to an abstract
state, which contains less information. Several different concrete states from the
trace might actually be mapped to the same abstract state. Thus, we can redisplay
the trace by means of a state transition diagram, where each abstract state occurs
only once, and transitions occur between two abstract states if there exists a
transition in the trace between two corresponding concrete states. However, by
doing this we also lose some context, for example a state visited exactly N times
in the actual trace is represented by a loop, and thus potentially infinitely visits,
in the abstract trace. Moreover, we can also make the sent and received messages
more abstract by applying a message abstraction function.

An example of an abstract state transition diagram of the leader election pro-
tocol is displayed in Fig. 1. Our tool automatically generates this diagram, given
an abstraction function specified by the user. The original trace used for this di-
agram is a trace of a correct execution with three leader election processes. Here,
the abstraction function on states is tracking the state of only one process, ab-
stracting away the states of the other processes. Moreover, it has removed all
other information in the concrete state, but for the role a process is playing. This
diagram shows that with help of an abstraction, one can get an understanding for



the basic parts of the algorithm, since it is easy to follow how the process moves
between the different roles. We call the transition diagram generated from a trace
and an abstraction function an abstract trace.

Common abstraction function building blocks We have implemented a
library of common abstraction function building blocks. Commonly used functions
are: removing parts of state data, replacing a list by its length, focusing on the
state of one process, merging states of two processes into one state, etc. This
library makes it easy to quickly define new abstraction functions.

2.4 Abstractions for Bug Finding

The idea is now to find an abstraction function which clearly helps us to establish
where in the code the bug is located. It is hard to give a general approach on how
to come up with an appropriate abstraction. Most of the time, the programmer has
some sort of intuition about what parts of the states and which events influence
a particular bug.

In the case of our bug, we have applied the following principles. Some of the
state data, such as the list of participating nodes, is the same in all states, and
such data can often be abstracted from. In the state data there are also two lists,
containing the references to monitored nodes and the nodes which are down. The
contents of these lists are not really useful, it is enough to know how many elements
there are in the lists. So, we abstract away from these lists by remembering their
length, but not their content. Concerning the events, most of the message data
can be abstracted away, only keeping the type of a message.

The above abstraction reduces the state space from 120 to 23 states, which is
small enough to overview. It is now possible to spot the bug by just looking at the
abstract trace (Fig. 2). The state where the process is elected as leader is dark
shaded in the figure (it is in the lower left half). This state is part of a long almost
non-forking path, and it is likely that the first illegal state is to find at the top of
this path. This is indeed the case and if we zoom in on two lightly shaded states
in the upper left part of Fig. 2 the result can be seen in Fig. 3.

Let us examine closer what happens in the bug-containing trace. The state
data contains three fields: the role, the number of nodes that are down, and the
number of monitored nodes. In the state labeled ’state9’ we can see that the list
of dead processes contain one process, and the list of monitored processes contain
four processes. Since processes should not monitor themselves, this is clearly one
process too many.

This bug turned out to be a mistake we made ourselves, when implementing the
cut-down version of the algorithm. We had been uncareful in the implementation
and mixed up variable names. It shows, however, the usefulness and simplicity of
the approach.

If we compare the abstract trace in Fig. 2 where the bug is present with an
abstraction made from a trace where the bug is fixed in Fig. 4, one can clearly see
from the graph structure that the erroneous behaviour is gone.

The first serious bug After correcting this bug, we collected a new set of
traces. This time we initially observed no obvious faulty behaviour, we therefore
activated the random delaying of messages in the generation of stimuli. Now we
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Fig. 2. Abstract trace containing bug
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Fig. 3. Faulty part of abstract trace
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Fig. 5. Deadlock situation in leader election protocol

could observe a faulty behaviour, this time in a leader election system with only
three nodes, and again it was a violation of the safety property: Two nodes simul-
taneously announced themselves as leaders. Again we turned to abstract traces
in the search for an explanation. In this case we found the error to be present in
situations where many nodes failed simultaneously.

Consider the situation in Fig. 5, where initially only process A is alive and
the priority of the processes is A > B > C. If then B and C revive more or less
simultaneously and the present leader (A) is suffering from slow connections, it is
possible that the newly revived processes will agree on a leader before the present
leader is able to announce its presence.

This is indeed a serious bug, and this bug is present also in the original Erlang
code. But it is also the case that this situation will not occur if the system is



simulated in such a way as to always have more than half of the processes alive.
So, we continued the analysis of the protocol with less aggressive stimuli.

2.5 Sanity Checks on Abstractions

We call an abstract trace sufficient if all real traces of the system are embedded
in it. Note that by construction, it is guaranteed that at least the original trace is
embedded in the abstract trace. If all possible traces of the system are embedded,
we cover all possible executions of the system. If an abstract trace is sufficient
and a property holds for this abstract trace, then it also holds for all real traces.
However, in general we do not know whether an abstract trace is sufficient. This
is related to coverage and is discussed in Sect. 2.8.

No terminating states There is a basic sanity check we can make in order to
check whether an abstract trace is obviously insufficient. We are mainly interested
in systems that are constantly up and running, i.e., systems that never terminate.
In this setting, we want to be able to represent any (infinite) behaviour of the
system with an (infinite) path through the state transition diagram. Any state
transition diagram which allows a path that simply stops, i.e. that has states
without any outgoing arc, cannot be a correct representation of a continuously
running system. Such terminating states can occur because the trace we used to
generate the abstraction terminated in the middle of a behaviour that was not
covered by any earlier parts of the trace.

Terminating states are automatically reported by our tool.

No quiescent states There are other problematic states where the system can
get stuck. Remember that we stimulate the system by taking down and reviving
processes arbitrarily during tracing. If there exist a state in an abstract trace that
has only one outgoing arc labeled with a ‘DOWN’-message of a process, something
is wrong as well. This means that the system is in a state where the only way to get
out is for a process to die. Since there are no guarantee that processes eventually
will die, the system is stuck in that state.

There might be two reasons for this. One is that the abstract trace is insuffi-
cient (which means that we should have chosen a different abstraction function,
or collected more trace data). The other is that the system has a deadlock in
that state (which could indicate an error). Our tool automatically reports such
quiescent states.

The second serious bug When we investigate quiescent states for our leader
election algorithm, there is a warning for some potential deadlock nodes. Most
of those can immediately be discarded, since these are states in which there is a
leader elected and hence is not problematic states.

But there is indeed a quiescent state which indicates a real deadlock! In some
cases when the leader process dies, the remaining processes end up in a state
where a process is waiting for a message that is not going to be sent. Consider
the situation in Fig. 6, where all the processes are initially alive, A is the leader
and the priority of the processes is A > B > C. Then if A is killed, B and C are
notified of this and each receive a ‘DOWN’-message. Now, if the message to B is
faster than the message to C, it is possible for B to start a new election round and
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Fig. 6. Deadlock situation in leader election protocol

send a ‘capture’-message to C before C receives the original ‘DOWN’-message. In
that case C will simply ignore the ‘capture’-message, since C (falsely) thinks that
A is alive and will answer the ‘capture’-message on behalf of C. When C finally
gets the ‘DOWN’-message, and starts its new election round B will ignore the
‘capture’-message from C with the motivation that B is higher prioritized than
C, which means that C should reply to B’s ‘capture’-message instead. Therefore
we end up in a situation where B is waiting for a message that C is not going to
send. This deadlock situation is not broken until another node dies or revives.

Thus we have discovered yet another bug in the leader election algorithm,
this bug is also present in the original, non-simplified, implementation! The error
would probably never occur when all nodes run on similar hardware, however, our
addition of delays in messages reveals a very tricky error that may show up in very
rare circumstances or when the protocol is used with nodes on different hardware.

2.6 Fault-Tolerant Leader Election Version 2

At this point, we had discovered two serious bugs in the original leader election
implementation. We were unable to repair the implementation. So, we decided
to try to implement and analyze another algorithm for leader election. Our new
algorithm is based on ‘The Bully Algorithm for Synchronous Systems’ in [17], but
again we were forced to make some modifications in order to adapt the algorithm
to our setting.

The algorithm is quite simple and it is easy to understand how it works. When
a process comes up, it first checks whether any process of higher priority is alive.
If there is, it waits for one of these processes to become leader. If not, the process
itself decides to try to become leader. It then checks that all other processes of
lower priority either are aware of its existence, or are dead. If so, it announces
itself as leader.

The main change we made to the algorithm in the paper was to avoid restart-
ing the election process each time a process revives. This is inefficient and not
applicable to the situation where our leader election protocol is supposed to be
used. We made the change in two steps, first we changed the algorithm such that
no new election would be started if a process with lower priority than the leader
revived and later we took care of the situation where a process with higher priority
than the leader revived. This second change was surprisingly complex. We also



made some changes that did not affect the functionality, but which reduced the
number of messages sent by the system. The code is available on the web [18].

After making the changes, we collected a new set of traces. We created some
different abstractions and from what we can see in those, the system is working
correctly. A couple of states are reported as potential deadlock states, but all
of them can be discarded since they are artifacts present because we have an
insufficient abstract trace.

2.7 Abstractions for Verification

So far, we have been able to spot errors exhibited by our abstractions either
visually or by means of simple sanity checks. However, when the abstractions or
desired properties get more complicated, to be sure that an abstract trace obeys a
given property, an automated technique is needed. Our idea is to simply formally
check properties of the abstract traces using a model checker.

LTL properties We formulate the properties that we want to verify in linear
time logic (LTL). In the introduction we mentioned two basic properties for a
leader election protocol: (1) There are never two elected leaders at the same time;
(2) If the system is stable, eventually a leader will be chosen. For a leader election
situation with 3 nodes, the first property can be expressed in LTL as follows:

2(¬((l1 ∧ l2) ∨ (l1 ∧ l3) ∨ (l2 ∧ l3))). (1)

Here, li is defined to be true exactly when the leader election process running on
node i is the elected leader. So, the property can be read as: ”It is never the case
that node 1 and 2 are leader at the same time, or node 1 and 3, or node 2 and 3.”

The second property can be expressed as follows:

2(¬(23(d1 ∨ d2 ∨ d3)) ⇒ 3(l1 ∨ l2 ∨ l3)). (2)

Here, li is defined as above, and di is true exactly when node i dies. This property
can be read as: ”It is always the case that if there are not an infinite number of
dying processes, eventually there will be a leader elected.” Alternatively, flipping
the implication sign and negating both sides, we can read the property as: ”The
only traces where no leader is chosen are those traces where process die infinitely
often.”

Checking if the above properties hold for a given abstract trace is done using
standard LTL model checking techniques [10]: First, a Büchi automaton that
accepts counter models of the property is constructed, and then we check if there
are accepting runs in the parallel composition P of the system and the Büchi
automaton.

Improper cycles Our setting however is a bit special, since we are modeling
asynchronous message passing using transition systems. The information needed
to represent the real state of our system consists of more than simply the state of
the transition diagram; we also need to know what messages have been sent that
have not arrived yet.

This problem is illustrated by the typical accepting runs of P we get when
looking for counter examples of our properties, which we call improper cycles. An
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n2@eniac:(candidate,L1,L1)
n1@eniac:(down)

n3@eniac:(surrendered,L1,L1)

n2 got accept

Fig. 7. Loop which is not a possible trace.

example is displayed in Figure 7. A cycle through P that contains a message M

that is being received by a transition on the cycle, but not sent by a transition of
the cycle can of course never represent a real run of the system.

The example in Figure 7 is a situation that cannot correspond to an actual
trace, since such a trace only consumes ‘accept’-messages. This could not be an
infinite chain of events, since that would mean that an infinite number of ‘accept’-
messages has to be produced. That is not the case, since we have a closed system
and no messages will be input to the system from outside. So, we do not only
have to search for accepting runs of P , but we also have to check that the found
cycle contains the production of all the messages that are consumed. Our property
checker automatically rejects runs that contain such improper cycles.

Results We have checked that both properties 1 and 2 hold for abstract traces
of our new implementation of the leader election algorithm, for up to N processes.
We have done most of the testing with N = 3 and N = 5, but has also used larger
N (N = 7 and N = 10). Note that this does not mean that we have formally
verified the above properties for the system; only that all generated abstract traces
satisfied the properties.

2.8 Coverage

When discussing test-based methods, the issue of coverage is central. Coverage
methods should provide some sort of measure of how much of the system one
has exercised, and this is important for evaluating the result of the testing. In
general, coverage methods can warn of potential situations where we have not

tested enough; very seldom we can know that we have indeed tested enough.
Therefore, it is good practice to apply as many different coverage measures as
possible.

Code coverage Erlang has a built-in module, cover, for various basic kinds of
coverage analysis. It is a very standardized set of tools, which basically provides
information of how many times each executable line of code has been accessed.
The limitations of point-coverage are well-known.

For our new leader election algorithm, we have traced the system such that
we exercised almost all lines of the code. The lines we did not exercise were lines
that were solely there for robustness reasons; they were expected never to be run.

Abstract trace coverage Instead of looking at how the actual generated traces
have exercises the different parts of the system, we can investigate coverage prop-
erties of the abstract traces.



A simple way of doing this is to specify temporal properties of expected events
in the abstract traces. For example, for each node, does there exist a state where
that node has been elected as leader? For each state and each process, is it possible
to reach a state where that process is dead? Does each state have a ‘DOWN’-
transition going out of that state (except for the state where all processes are
dead)?

Such properties can of course be given a quantitative aspect: We can ask how
many states there are where all alive processes have a possibility to die. Lastly, a
more global kind of coverage measure is to compare the size of the theoretically
available state space to the size of the actually reached state space.

For our new leader election algorithm, coverage results are of course affected
by how much tracing is done, and how good the stimuli are chosen. It is interesting
to study what will happen with coverage numbers for different amount of tracing.
The measures that we considered here are the percentage of reached states and the
percentage of the states which could be left via a ‘DOWN’-transition. The results
are not very surprising, the number of reached states as well as the number of nodes
with an outgoing ‘DOWN’-transition increased with the length of the traces. The
numbers are quickly rising for small amounts of tracing, but levels out after further
tracing. In the longest traces we reached 87% of the states in the complete state
space (it is not entirely clear that all of the states could indeed be reached). About
30% of states had an outgoing ’DOWN’-transition, a somewhat low number. This
could be explained by the fact that the stimuli system was not fast enough, so in
many situations a killing could not happen with our simulation technique. It is
possible that this can be improved with better stimuli generation.

3 Related Work

The leader election protocol has been extensively studied. There are many varia-
tions of this algorithm with different assumptions about the network topology and
other constraints. Published leader election algorithms are often proved correct on
paper, but implementations tend to divert a bit from the actual algorithm, after
which correctness is no longer guaranteed. This happened for example with both
implementations we studied, which were based on published algorithms [16, 17].

Formal verification and formal testing are supplementary techniques. We deal
with real code, whereas there have been other approaches to deal with models of
leader election algorithms. For example, the formal verification of the IEEE 1394
leader election protocol [14] has results of that verification cannot be directly
applied to our leader election protocol, since different assumptions are made on
the network topology and detection of faults. It is an interesting, but still open
question, whether we could use our abstraction functions and tracing on an im-
plementation of the IEEE 1394 protocol in order to obtain exactly those abstract
traces that are generated by the manual abstraction in [14].

The two other model checking approaches that we are aware of [11, 12] deal
with algorithms that have constraints that differ from our case. Model checking is
possible because the algorithms that are verified are essentially less complex than
the one we consider.



Different from formal testing, we do not have a formal model of the software
to generate test cases (e.g. [8, 19, 20]). We more or less construct an incomplete
model from the real traces. This model is on one hand shown to the engineers for
visual verification and on the other hand input to our model checking approach.
Given that we call all our traced events observable, we obtain an abstraction in
which all real traces are observable in the abstract trace, however, not vice versa.
We use executions of the software to obtain a model for the software with a good
coverage and apply model checking techniques on the model to test the software.

Compared to the initial work on trace analysis for Erlang [5], we went further
than visualizing the traces as graphs, but we actually performed model checking
on those graphs. We improved the trace collection mechanism to simulate delays in
communication and to be able to handle events that occur quickly after that trac-
ing starts (events that we missed in the earlier setting). The latter was necessary
to be able to deal with re-starting processes.

Another project working with trace analysis is the Java PathExplorer [13].
With this tool it is possible to specify properties for Java programs in temporal
logic. The program is instrumented to emit events when executed. The properties
are then checked for the event stream. The related tool Java MultiPathExplorer
[15] takes the concept a bit further by also being able to generate more possible
traces from a single observed trace. This is done by reordering of unrelated events.
This technique could be complementary to our method that uses abstractions to
generate more possible traces.

4 Conclusions and Future Work

In this paper we describe a case-study in which we use abstraction of traces to
analyze a complex software component. By using this technique, we were able to
identify two errors in the code. We re-designed the code and verified it by the
same technique of trace abstraction, not finding any errors this time.

The described verification methodology of analysis and abstraction of traces is
generally applicable to Erlang programs, in particular to the kind of software that
is written in industrial projects. The primitives necessary to create a trace are
part of the standard Erlang runtime system. Generating traces is rather common
testing technology for engineers working with Erlang software. However, so far,
engineers look at the output traces as a textual long list of events. By the possibil-
ity of visual verification, i.e. inspection of the graphs obtained from an abstracted
trace, motivation is created to write those abstraction functions [5]. Compared to
writing extra code for testing Erlang code, writing the abstraction functions really
is a minor job, since they only address data conversion of state and messages.

The first thing we achieve by using abstracted traces instead of analyzing the
real traces, is that there is less ‘noise’ in the output. With manual inspection of a
trace, it makes a difference whether one looks at 2000 long events or a few dozens
of short events. The second advantage is that the abstraction allows us to detect
cyclic behaviour, which need not necessarily be cyclic behaviour in the original
trace. For example, if one abstracts from a time stamp, one would be able to see a
certain message repetitively been sent from a certain state, whereas with the time
stamp, it occurs as non-cyclic in the trace. The additional cycles not only make



the trace shorter, but they also give extra insight in the behaviour of the software.
Third, one can prove properties over the abstract traces, which then hold for many
more than just the original trace. A property proved for an abstract trace holds
for all traces that result in the same abstraction. In that way, we achieve a larger
coverage by only looking at a few traces.

Since the methodology of generating traces in general cannot guarantee full
coverage, we use it for identifying errors instead of proving correctness. By proving
properties that should hold, we know that something is wrong if we get a counter
example. If we cannot exhibit the found error in the actual trace, we might have
used an inadequate abstraction. For example, the abstract state space may contain
cycles that do not correspond to a cycle in the real code. Thus, we can detect
errors in the code, but we pay the price of possibly seeing some false negatives.
However, these false negatives also give us a certain feedback; they indicate that
our abstraction probably can be improved. In such a way, it results in a better
insight in the code.

As mentioned in the introduction, part of the AXD 301 software was verified
by using a model checking approach. Is the same approach applicable here? First
of all, the tool to generate the state space of an Erlang program [4] could not be
directly applied to the code. The tool abstracts away from process failures, thus
we could only verify all runs in which none of the processes died. Here we could
confirm that indeed a leader was selected on all branches.

It is ongoing work to add process failure and recovery to the tool. We added
it by hand to the model we obtained from the tool, immediately spotting two
major problems. First, there is the obvious state space explosion problem, resulting
from the explosion in possible events that can happen in different orders. Second,
the way message passing is modeled by the tool is too restrictive and excludes
particular orders of events that could happen in reality. Thus, with the present
available technology, it is a real challenge to verify the properties we are interested
in with a model checker. Therefore we think that one should first apply the much
cheaper tracing technology to find errors in the code. In case one cannot find any
error, it might be beneficial to generate the whole state space and use the same
abstraction functions to reduce the model and prove the properties of interest.

Future Work Possible future work includes automating the creation of the used
abstraction functions. We have also considered developing a design document that
helps software engineers to quickly create useful abstraction functions.

We would also like to see if it is possible to integrate our abstraction functions
with standard model checking techniques based on abstraction. In order to increase
the capacity (e.g. number of participating processes) of model checking techniques
even more, we probably even need to use symmetry reduction or symbolic model
checking.
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